Abel, H.J., Larson, D.E., Regier, A.A., Chiang, C., Das, I., Kanchi, K.L., Layer, R.M., Neale, B.M., Salerno, W.J., Reeves, C., et al., 2020. Mapping and characterization of structural variation in 17,795 human genomes. Nature 583, 83-89. https://doi.org/10.1038/s41586-020-2371-0.
|
Badet, T., Oggenfuss, U., Abraham, L., McDonald, B.A., Croll, D., 2020. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol. 18, 12. https://doi.org/10.1186/s12915-020-0744-3.
|
Barragan, A.C., Latorre, S.M., Malmgren, A., Harant, A., Win, J., Sugihara, Y., Burbano, H.A., Kamoun, S., Langner, T., 2024. Multiple horizontal mini-chromosome transfers drive genome evolution of clonal blast fungus lineages. bioRxiv 2024.02.13.580079. https://doi.org/10.1101/2024.02.13.580079.
|
Benami, M., Isack, Y., Grotsky, D., Levy, D., Kofman, Y., 2020. The economic potential of arbuscular mycorrhizal fungi in agriculture. Gd. Chall. Fungal Biotechnol. 239-279.
|
Berger, K.H., Yaffe, M.P., 2000. Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol. 8, 508-513. https://doi.org/10.1016/S0966-842X(00)01862-X.
|
Bertazzoni, S., Williams, A.H., Jones, D.A., Syme, R.A., Tan, K.-C., Hane, J.K., 2018. Accessories make the outfit: accessory chromosomes and other dispensable DNA regions in plant-pathogenic Fungi. Mol. Plant Microbe Interact. 31, 779-788.
|
Bing, J., Hu, T., Zheng, Q., Munoz, J.F., Cuomo, C.A., Huang, G., 2020. Experimental evolution identifies adaptive aneuploidy as a mechanism of fluconazole resistance in Candida auris. Antimicrob. Agents Chemother. 65, 10-1128.
|
Black, B., Lee, C., Horianopoulos, L.C., Jung, W.H., Kronstad, J.W., 2021. Respiring to infect: emerging links between mitochondria, the electron transport chain, and fungal pathogenesis. PLoS Pathog. 17, e1009661. https://doi.org/10.1371/journal.ppat.1009661.
|
Bonfante, P., Genre, A., 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48. https://doi.org/10.1038/ncomms1046.
|
Bongomin, F., Gago, S., Oladele, R.O., Denning, D.W., 2017. Global and multi-National prevalence of fungal diseases-estimate precision. J. Fungi 3. https://doi.org/10.3390/jof3040057.
|
Bradshaw, R.E., Sim, A.D., Chettri, P., Dupont, P.-Y., Guo, Y., Hunziker, L., McDougal, R.L., Van der Nest, A., Fourie, A., Wheeler, D., et al., 2019. Global population genomics of the forest pathogen Dothistroma septosporum reveal chromosome duplications in high dothistromin-producing strains. Mol. Plant Pathol. 20, 784-799.
|
Carpenter, D., Dhar, S., Mitchell, L.M., Fu, B., Tyson, J., Shwan, N.A.A., Yang, F., Thomas, M.G., Armour, J.A.L., 2015. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum. Mol. Genet. 24, 3472-3480. https://doi.org/10.1093/hmg/ddv098.
|
Castanera, R., Lopez-Varas, L., Borgognone, A., LaButti, K., Lapidus, A., Schmutz, J., Grimwood, J., Perez, G., Pisabarro, A.G., Grigoriev, I.V., et al., 2016. Transposable elements versus the fungal genome: impact on whole-genome architecture and transcriptional profiles. PLoS Genet. 12, e1006108. https://doi.org/10.1371/journal.pgen.1006108.
|
Cervenak, F., Sepsiova, R., Nosek, J., Tomaska, L., 2021. Step-by-Step evolution of telomeres: lessons from yeasts. Genome Biol. Evol. 13, evaa268. https://doi.org/10.1093/gbe/evaa268.
|
Chen, S., Yuan, N., Schnabel, G., Luo, C., 2017. Function of the genetic element ‘Mona’ associated with fungicide resistance in Monilinia fructicola. Mol. Plant Pathol. 18, 90-97. https://doi.org/10.1111/mpp.12387.
|
Chen, X., Magee, B.B., Dawson, D., Magee, P.T., Kumamoto, C.A., 2004. Chromosome 1 trisomy compromises the virulence of Candida albicans. Mol. Microbiol. 51, 551-565. https://doi.org/10.1046/j.1365-2958.2003.03852.x.
|
Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M., Yoshida, K., Terauchi, R., Fujita, Y., Nakayashiki, H., et al., 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 7, e1002147.
|
Cohen, A.B., Cai, G., Price, D.C., Molnar, T.J., Zhang, N., Hillman, B.I., 2024. The massive 340 megabase genome of Anisogramma anomala, a biotrophic ascomycete that causes eastern filbert blight of hazelnut. BMC Genom. 25, 347. https://doi.org/10.1186/s12864-024-10198-1.
|
Cuomo, C.A., Guldener, U., Xu, J.-R., Trail, F., Turgeon, B.G., Di Pietro, A., Walton, J.D., Ma, L.-J., Baker, S.E., Rep, M., et al., 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317, 1400-1402.
|
de Jonge, R., Bolton, M.D., Kombrink, A., van den Berg, G.C., Yadeta, K.A., Thomma, B.P., 2013. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 23, 1271-1282.
|
De Wit, P.J., Van Der Burgt, A., Okmen, B., Stergiopoulos, I., Abd-Elsalam, K.A., Aerts, A.L., Bahkali, A.H., Beenen, H.G., Chettri, P., Cox, M.P., et al., 2012. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 8, e1003088.
|
Dennis, M.Y., Nuttle, X., Sudmant, P.H., Antonacci, F., Graves, T.A., Nefedov, M., Rosenfeld, J.A., Sajjadian, S., Malig, M., Kotkiewicz, H., et al., 2012. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912-922. https://doi.org/10.1016/j.cell.2012.03.033.
|
Dong, S., Raffaele, S., Kamoun, S., 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr. Opin. Genet. Dev. 35, 57-65.
|
Dort, E.N., Layne, E., Feau, N., Butyaev, A., Henrissat, B., Martin, F.M., Haridas, S., Salamov, A., Grigoriev, I.V., Blanchette, M., et al., 2023. Large-scale genomic analyses with machine learning uncover predictive patterns associated with fungal phytopathogenic lifestyles and traits. Sci. Rep. 13, 17203. https://doi.org/10.1038/s41598-023-44005-w.
|
Elliott, S., 2022. Food Security: How Do Crop Plants Combat Pathogens? [WWW Document]. URL https://www.ars.usda.gov/oc/dof/food-security-how-do-crop-plants-combat-pathogens/(accessed 2.May.2024).
|
Faino, L., Seidl, M.F., Shi-Kunne, X., Pauper, M., van den Berg, G.C., Wittenberg, A.H., Thomma, B.P., 2016. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res. 26, 1091-1100.
|
Faris, J.D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Cloutier, S., Fellers, J.P., Meinhardt, S.W., Rasmussen, J.B., Xu, S.S., et al., 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl. Acad. Sci. USA 107, 13544-13549.
|
Feurtey, A., Lorrain, C., McDonald, M.C., Milgate, A., Solomon, P.S., Warren, R., Puccetti, G., Scalliet, G., Torriani, S.F.F., Gout, L., et al., 2023. A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen. Nat. Commun. 14, 1059. https://doi.org/10.1038/s41467-023-36674-y.
|
Fisher, M.C., Gurr, S.J., Cuomo, C.A., Blehert, D.S., Jin, H., Stukenbrock, E.H., Stajich, J.E., Kahmann, R., Boone, C., Denning, D.W., et al., 2020. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio 11, 10-1128.
|
Fletcher, K., Shin, O.-H., Clark, K.J., Feng, C., Putman, A.I., Correll, J.C., Klosterman, S.J., Van Deynze, A., Michelmore, R.W., 2022. Ancestral chromosomes for family peronosporaceae inferred from a telomere-to-telomere genome assembly of Peronospora effusa. MPMI (Mol. Plant-Microbe Interact.) 35, 450-463. https://doi.org/10.1094/MPMI-09-21-0227-R.
|
Fokkens, L., Shahi, S., Connolly, L.R., Stam, R., Schmidt, S.M., Smith, K.M., Freitag, M., Rep, M., 2018. The multi-speed genome of Fusarium oxysporum reveals association of histone modifications with sequence divergence and footprints of past horizontal chromosome transfer events. bioRxiv 465070.
|
Frantzeskakis, L., Kracher, B., Kusch, S., Yoshikawa-Maekawa, M., Bauer, S., Pedersen, C., Spanu, P.D., Maekawa, T., Schulze-Lefert, P., Panstruga, R., 2018. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genom. 19, 381. https://doi.org/10.1186/s12864-018-4750-6.
|
Frantzeskakis, L., Kusch, S., Panstruga, R., 2019a. The need for speed: compartmentalized genome evolution in filamentous phytopathogens. Mol. Plant Pathol. 20, 3-7.
|
Frantzeskakis, L., Nemeth, M.Z., Barsoum, M., Kusch, S., Kiss, L., Takamatsu, S., Panstruga, R., 2019b. The Parauncinula polyspora draft genome provides insights into patterns of gene erosion and genome expansion in powdery mildew fungi. mBio 10, e01692.-19.
|
Galagan, J.E., Selker, E.U., 2004. RIP: the evolutionary cost of genome defense. Trends Genet. 20, 417-423. https://doi.org/10.1016/j.tig.2004.07.007.
|
Galazka, J.M., Freitag, M., 2014. Variability of chromosome structure in pathogenic fungi-of ‘ends and odds.Host-microbe Interact. Fungiparasitesviruses 20, 19-26. https://doi.org/10.1016/j.mib.2014.04.002.
|
Gandia, A., van den Brandhof, J.G., Appels, F.V.W., Jones, M.P., 2021. Flexible fungal materials: shaping the future. Trends Biotechnol. 39, 1321-1331. https://doi.org/10.1016/j.tibtech.2021.03.002.
|
Gilchrist, C., Stelkens, R., 2019. Aneuploidy in yeast: segregation error or adaptation mechanism? Yeast 36, 525-539. https://doi.org/10.1002/yea.3427.
|
Gluck-Thaler, E., Ralston, T., Konkel, Z., Ocampos, C.G., Ganeshan, V.D., Dorrance, A.E., Niblack, T.L., Wood, C.W., Slot, J.C., Lopez-Nicora, H.D., et al., 2022. Giant Starship elements mobilize accessory genes in fungal genomes. Mol. Biol. Evol. 39, msac109.
|
Goodwin, S.B., Ben M'Barek, S., Dhillon, B., Wittenberg, A.H., Crane, C.F., Hane, J.K., Foster, A.J., Van der Lee, T.A., Grimwood, J., Aerts, A., et al., 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 7, e1002070.
|
Gorkovskiy, A., Verstrepen, K.J., 2021. The role of structural variation in adaptation and evolution of yeast and other fungi. Genes 12. https://doi.org/10.3390/genes12050699.
|
Gourlie, R., McDonald, M., Hafez, M., Ortega-Polo, R., Low, K.E., Abbott, D.W., Strelkov, S.E., Daayf, F., Aboukhaddour, R., 2022. The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic effectors ToxA and ToxB. BMC Biol. 20, 239. https://doi.org/10.1186/s12915-022-01433-w.
|
Grigoriev, I.V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., et al., 2014. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699-D704.
|
Guin, K., Sreekumar, L., Sanyal, K., 2020. Implications of the evolutionary trajectory of centromeres in the fungal kingdom. Annu. Rev. Microbiol. 74, 835-853. https://doi.org/10.1146/annurev-micro-011720-122512.
|
Gupta, Y.K., Marcelino-Guimaraes, F.C., Lorrain, C., Farmer, A., Haridas, S., Ferreira, E.G.C., Lopes-Caitar, V.S., Oliveira, L.S., Morin, E., Widdison, S., et al., 2023. Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi. Nat. Commun. 14, 1-16.
|
Harari, Y., Ram, Y., Rappoport, N., Hadany, L., Kupiec, M., 2018. Spontaneous changes in ploidy are common in yeast. Curr. Biol. 28, 825-835.
|
Hartmann, F.E., Sanchez-Vallet, A., McDonald, B.A., Croll, D., 2017. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J. 11, 1189-1204.
|
Hickman, M.A., Zeng, G., Forche, A., Hirakawa, M.P., Abbey, D., Harrison, B.D., Wang, Y.-M., Su, C., Bennett, R.J., Wang, Y., et al., 2013. The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494, 55-59.
|
Hollox, E.J., Zuccherato, L.W., Tucci, S., 2022. Genome structural variation in human evolution. Focus Issue Stud. Genet. Var. Evol. Lens 38, 45-58. https://doi.org/10.1016/j.tig.2021.06.015.
|
Huth, L., Ash, G.J., Idnurm, A., Kiss, L., Vaghefi, N., 2021. The “bipartite” structure of the first genome of Ampelomyces quisqualis, a common hyperparasite and biocontrol agent of powdery mildews, may point to its evolutionary origin from plant pathogenic fungi. Genome Biol. Evol. 13, evab182. https://doi.org/10.1093/gbe/evab182.
|
Irelan, J.T., Hagemann, A.T., Selker, E.U., 1994. High frequency repeat-induced point mutation (RIP) is not associated with efficient recombination in Neurospora. Genetics 138, 1093-1103. https://doi.org/10.1093/genetics/138.4.1093.
|
Jones, L., Riaz, S., Morales-Cruz, A., Amrine, K.C.H., McGuire, B., Gubler, W.D., Walker, M.A., Cantu, D., 2014. Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genom. 15, 1081. https://doi.org/10.1186/1471-2164-15-1081.
|
Kang, S., Lebrun, M.H., Farrall, L., Valent, B., 2001. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. MPMI (Mol. Plant-Microbe Interact.) 14, 671-674. https://doi.org/10.1094/MPMI.2001.14.5.671.
|
Kersey, P.J., Lawson, D., Birney, E., Derwent, P.S., Haimel, M., Herrero, J., Keenan, S., Kerhornou, A., Koscielny, G., Kahari, A., et al., 2010. Ensembl Genomes: extending Ensembl across the taxonomic space. Nucleic Acids Res. 38, D563-D569.
|
Kim, S., Liachko, I., Brickner, D.G., Cook, K., Noble, W.S., Brickner, J.H., Shendure, J., Dunham, M.J., 2017. The dynamic three-dimensional organization of the diploid yeast genome. Elife 6, e23623. https://doi.org/10.7554/eLife.23623.
|
King, R., Urban, M., Hammond-Kosack, M.C.U., Hassani-Pak, K., Hammond-Kosack, K.E., 2015. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genom. 16, 544. https://doi.org/10.1186/s12864-015-1756-1.
|
Komluski, J., Habig, M., Stukenbrock, E.H., 2023. Repeat-induced point mutation and gene conversion coinciding with heterochromatin shape the genome of a plant-pathogenic fungus. mBio e03290-22.
|
Kress, W.J., Soltis, D.E., Kersey, P.J., Wegrzyn, J.L., Leebens-Mack, J.H., Gostel, M.R., Liu, X., Soltis, P.S., 2022. Green plant genomes: what we know in an era of rapidly expanding opportunities. Proc. Natl. Acad. Sci. USA 119, e2115640118.
|
Ksiezopolska, E., Schikora-Tamarit, M.A., Beyer, R., Nunez-Rodriguez, J.C., Schuller, C., Gabaldon, T., 2021. Narrow mutational signatures drive acquisition of multidrug resistance in the fungal pathogen Candida glabrata. Curr. Biol. 31, 5314-5326.e10. https://doi.org/10.1016/j.cub.2021.09.084.
|
Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al., 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062.
|
Lee, D.K., Hsiang, T., Lachance, M.-A., Smith, D.R., 2020. The strange mitochondrial genomes of Metschnikowia yeasts. Curr. Biol. 30, R800-R801. https://doi.org/10.1016/j.cub.2020.05.075.
|
Li Cheng-Xi, Liu Lin, Zhang Ting, Luo Xue-Mei, Feng Jia-Xun, Zhao Shuai, 2022. Three-dimensional genome map of the filamentous fungus Penicillium oxalicum. Microbiol. Spectr. 10, e02121.-21. https://doi.org/10.1128/spectrum.02121-21.
|
Li, X., Yang, F., Li, D., Zhou, M., Wang, X., Xu, Q., Zhang, Y., Yan, L., Jiang, Y., 2015. Trisomy of chromosome R confers resistance to triazoles in Candida albicans. Med. Mycol. 53, 302-309. https://doi.org/10.1093/mmy/myv002.
|
Liu, S., Lin, G., Ramachandran, S.R., Daza, L.C., Cruppe, G., Tembo, B., Singh, P.K., Cook, D., Pedley, K.F., Valent, B., 2024. Rapid mini-chromosome divergence among fungal isolates causing wheat blast outbreaks in Bangladesh and Zambia. New Phytol. 241, 1266-1276. https://doi.org/10.1111/nph.19402.
|
Lue, N.F., 2010. Plasticity of telomere maintenance mechanisms in yeast. Trends Biochem. Sci. 35, 8-17.
|
Luo, C.-X., Hu, M.-J., Jin, X., Yin, L.-F., Bryson, P.K., Schnabel, G., 2010. An intron in the cytochrome b gene of Monilinia fructicola. mitigates the risk of resistance development to QoI fungicides. Pest Manag. Sci. 66, 1308-1315. https://doi.org/10.1002/ps.2016.
|
Ma, L.-J., Van Der Does, H.C., Borkovich, K.A., Coleman, J.J., Daboussi, M.-J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., et al., 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464, 367-373.
|
Mason, J.M.O., McEachern, M.J., 2018. Chromosome ends as adaptive beginnings: the potential role of dysfunctional telomeres in subtelomeric evolvability. Curr. Genet. 64, 997-1000. https://doi.org/10.1007/s00294-018-0822-z.
|
Mat Razali, N., Cheah, B.H., Nadarajah, K., 2019. Transposable elements adaptive role in genome plasticity, pathogenicity and evolution in fungal phytopathogens. Int. J. Mol. Sci. 20, 3597.
|
McDonald, M.C., Taranto, A.P., Hill, E., Schwessinger, B., Liu, Z., Simpfendorfer, S., Milgate, A., Solomon, P.S., 2019. Transposon-mediated horizontal transfer of the host-specific virulence protein ToxA between three fungal wheat pathogens. mBio 10, e01515.-19.
|
Mehrabi, R., Mirzadi Gohari, A., Kema, G.H.J., 2017. Karyotype variability in plant-pathogenic fungi. Annu. Rev. Phytopathol. 55, 483-503. https://doi.org/10.1146/annurev-phyto-080615-095928.
|
Merryman, M., Crigler, J., Seipelt-Thiemann, R., McClelland, E., 2020. A mutation in C. neoformans mitochondrial NADH dehydrogenase results in increased virulence in mice. Virulence 11, 1366-1378. https://doi.org/10.1080/21505594.2020.1831332.
|
Miao, V.P., Covert, S.F., VanEtten, H.D., 1991. A fungal gene for antibiotic resistance on a dispensable (“B”) chromosome. Science 254, 1773-1776.
|
Miller, M.G., Johnson, A.D., 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293-302.
|
Morrow, C.A., Lee, I.R., Chow, E.W., Ormerod, K.L., Goldinger, A., Byrnes III, E.J., Nielsen, K., Heitman, J., Schirra, H.J., Fraser, J.A., 2012. A unique chromosomal rearrangement in the Cryptococcus neoformans var. grubii type strain enhances key phenotypes associated with virulence. mBio 3, 10-1128.
|
Muller, M.C., Praz, C.R., Sotiropoulos, A.G., Menardo, F., Kunz, L., Schudel, S., Oberhansli, S., Poretti, M., Wehrli, A., Bourras, S., et al., 2019. A chromosome-scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. New Phytol. 221, 2176-2189. https://doi.org/10.1111/nph.15529.
|
Niskanen, T., Lucking, R., Dahlberg, A., Gaya, E., Suz, L.M., Mikryukov, V., Liimatainen, K., Druzhinina, I., Westrip, J.R.S., Mueller, G.M., et al., 2023. Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu. Rev. Environ. Resour. https://doi.org/10.1146/annurev-environ-112621-090937.
|
Noble, S.M., Johnson, A.D., 2007. Genetics of Candida albicans, a diploid human fungal pathogen. Annu. Rev. Genet. 41, 193-211.
|
Oggenfuss, U., Badet, T., Wicker, T., Hartmann, F.E., Singh, N.K., Abraham, L., Karisto, P., Vonlanthen, T., Mundt, C., McDonald, B.A., et al., 2021. A population-level invasion by transposable elements triggers genome expansion in a fungal pathogen. Elife 10, e69249. https://doi.org/10.7554/eLife.69249.
|
Ohm, R.A., Feau, N., Henrissat, B., Schoch, C.L., Horwitz, B.A., Barry, K.W., Condon, B.J., Copeland, A.C., Dhillon, B., Glaser, F., et al., 2012. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog. 8, e1003037.
|
Omer, B., Sudharsan, S., Di, G., Adi, D.-F., Varda, Z., T., D.M., Edward, S., 2023. Aneuploidy Formation in the filamentous fungus Aspergillus flavus in response to azole stress. Microbiol. Spectr. 11, e04339.-22. https://doi.org/10.1128/spectrum.04339-22.
|
Osterhage, J.L., Friedman, K.L., 2009. Chromosome end maintenance by telomerase. J. Biol. Chem. 284, 16061-16065. https://doi.org/10.1074/jbc.R900011200.
|
Pedersen, C., van Themaat, E.V.L., McGuffin, L.J., Abbott, J.C., Burgis, T.A., Barton, G., Bindschedler, L.V., Lu, X., Maekawa, T., Wessling, R., et al., 2012. Structure and evolution of barley powdery mildew effector candidates. BMC Genom. 13, 694.
|
Peter, J., De Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D., Bergstrom, A., Sigwalt, A., Barre, B., Freel, K., Llored, A., et al., 2018. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339-344.
|
Raffaele, S., Farrer, R.A., Cano, L.M., Studholme, D.J., MacLean, D., Thines, M., Jiang, R.H., Zody, M.C., Kunjeti, S.G., Donofrio, N.M., et al., 2010. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330, 1540-1543.
|
Rahnama, M., Wang, B., Dostart, J., Novikova, O., Yackzan, D., Yackzan, A., Bruss, H., Baker, M., Jacob, H., Zhang, X., et al., 2021. Telomere roles in fungal genome evolution and adaptation. Front. Genet. 12, 676751.
|
Ropars, J., de la Vega, R.C.R., Lopez-Villavicencio, M., Gouzy, J., Sallet, E., Dumas, E., Lacoste, S., Debuchy, R., Dupont, J., Branca, A., et al., 2015. Adaptive horizontal gene transfers between multiple cheese-associated fungi. Curr. Biol. 25, 2562-2569.
|
Rouxel, T., Grandaubert, J., Hane, J.K., Hoede, C., Van de Wouw, A.P., Couloux, A., Dominguez, V., Anthouard, V., Bally, P., Bourras, S., et al., 2011. Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat. Commun. 2, 1-10.
|
Sanchez, S., Demain, A.L., 2017. Bioactive products from fungi, in: Puri, M. (Ed.), Food Bioactives: Extraction and Biotechnology Applications. Springer International Publishing, Cham, pp. 59-87. https://doi.org/10.1007/978-3-319-51639-4_3.
|
Sanjoy, P., Mark, S., Heredge, T.G., Hong, L., Daisuke, H., Katsuya, G., G., F.S., Scott, M.-R.W., 2019. AtrR is an essential determinant of azole resistance in Aspergillus fumigatus. mBio 10, 10.1128/mbio.02563-18. https://doi.org/10.1128/mbio.02563-18.
|
Scheele, B.C., Pasmans, F., Skerratt, L.F., Berger, L., Martel, A., Beukema, W., Acevedo, A.A., Burrowes, P.A., Carvalho, T., Catenazzi, A., et al., 2019. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459-1463. https://doi.org/10.1126/science.aav0379.
|
Scheppke, J., 2023. Humongous Fungus. Available at: https://www.oregonencyclopedia.org/articles/humongous-fungus-armillaria-ostoyae/. Last accessed Feb 20, 2024. [WWW Document]. URL https://www.oregonencyclopedia.org/articles/humongous-fungus-armillaria-ostoyae/(accessed 2.May.2024).
|
Schwessinger, B., Sperschneider, J., Cuddy, W.S., Garnica, D.P., Miller, M.E., Taylor, J.M., Dodds, P.N., Figueroa, M., Park, R.F., Rathjen, J.P., 2018. A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity. mBio 9, 10-1128.
|
Seidl, M.F., Kramer, H.M., Cook, D.E., Fiorin, G.L., Berg van den, G.C.M, Faino, L., Thomma, B.P.H.J., 2020. Repetitive elements contribute to the diversity and evolution of centromeres in the fungal genus Verticillium. mBio 11, e01714.-20. https://doi.org/10.1128/mBio.01714-20.
|
Selker, E.U., 2002. Repeat-induced gene silencing in fungi. Adv. Genet. 46, 439-450.
|
Selker, E.U., Garrett, P.W., 1988. DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc. Natl. Acad. Sci. USA 85, 6870-6874.
|
Selmecki, A., Forche, A., Berman, J., 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367-370.
|
Sionov, E., Lee, H., Chang, Y.C., Kwon-Chung, K.J., 2010. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6, e1000848. https://doi.org/10.1371/journal.ppat.1000848.
|
Smith, A.C., Rizvi, H., Hickman, M.A., Morran, L.T., 2022. Increased virulence and large-scale reduction in genome size of tetraploid Candida albicans evolved in nematode hosts. Front. Fungal Biol. 3.
|
Spatafora, J.W., Aime, M.C., Grigoriev, I.V., Martin, F., Stajich, J.E., Blackwell, M., 2017. The fungal tree of life: from molecular systematics to genome-scale phylogenies. Fungal Kingd. 1-34.
|
Steinhauer, D., Salat, M., Frey, R., Mosbach, A., Luksch, T., Balmer, D., Hansen, R., Widdison, S., Logan, G., Dietrich, R.A., et al., 2019. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici. PLoS Pathog. 15, e1007780. https://doi.org/10.1371/journal.ppat.1007780.
|
Stergiopoulos, I., de Wit, P.J., 2009. Fungal effector proteins. Annu. Rev. Phytopathol. 47, 233-263.
|
Stergiopoulos, I., Kourmpetis, Y.A., Slot, J.C., Bakker, F.T., De Wit, P.J., Rokas, A., 2012. In silico characterization and molecular evolutionary analysis of a novel superfamily of fungal effector proteins. Mol. Biol. Evol. 29, 3371-3384.
|
Sunshine, A.B., Payen, C., Ong, G.T., Liachko, I., Tan, K.M., Dunham, M.J., 2015. The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biol. 13, e1002155.
|
Talbot, N.J., Salch, Y.P., Ma, M., Hamer, J.E., 1993. Karyotypic variation within clonal lineages of the rice blast fungus, Magnaporthe grisea. Appl. Environ. Microbiol. 59, 585-593.
|
Taylor, J.W., Branco, S., Gao, C., Hann-Soden, C., Montoya, L., Sylvain, I., Gladieux, P., 2017. Sources of fungal genetic variation and associating it with phenotypic diversity. Fungal Kingd. 635-655.
|
Testa, A.C., Oliver, R.P., Hane, J.K., 2016. OcculterCut: a comprehensive survey of AT-rich regions in fungal genomes. Genome Biol. Evol. 8, 2044-2064. https://doi.org/10.1093/gbe/evw121.
|
Tobias, P.A., Schwessinger, B., Deng, C.H., Wu, C., Dong, C., Sperschneider, J., Jones, A., Luo, Z., Zhang, P., Sandhu, K., et al., 2021. Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements. G3 11, jkaa015.
|
Torres, D.E., Oggenfuss, U., Croll, D., Seidl, M.F., 2020. Genome evolution in fungal plant pathogens: looking beyond the two-speed genome model. Fungal Biol. Rev.
|
Torres, D.E., Reckard, A.T., Klocko, A.D., Seidl, M.F., 2023. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol. Rev. 47, fuad021. https://doi.org/10.1093/femsre/fuad021.
|
Urquhart, A.S., Chong, N.F., Yang, Y., Idnurm, A., 2022. A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr. Biol. 32, 937-950.
|
Urquhart, A.S., Vogan, A.A., Gardiner, D.M., Idnurm, A., 2023. Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proc. Natl. Acad. Sci. USA 120, e2214521120.
|
van Westerhoven, A., Aguilera-Galvez, C., Nakasato-Tagami, G., Shi-Kunne, X., Dijkstra, J., Martinez de la Parte, E., Chavarro Carero, E., Meijer, H., Feurtey, A., Maryani, N., et al., 2023. Segmental duplications drive the evolution of accessory regions in a major crop pathogen. bioRxiv 2023-06.
|
Vlaardingerbroek, I., Beerens, B., Schmidt, S.M., Cornelissen, B.J., Rep, M., 2016. Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici. Mol. Plant Pathol. 17, 1455-1466.
|
Wacker, T., Helmstetter, N., Wilson, D., Fisher, M.C., Studholme, D.J., Farrer, R.A., 2023. Two-speed genome evolution drives pathogenicity in fungal pathogens of animals. Proc. Natl. Acad. Sci. USA 120, e2212633120.
|
Wadi, L., El Jarkass, H.T., Tran, T.D., Islah, N., Luallen, R.J., Reinke, A.W., 2023. Genomic and phenotypic evolution of nematode-infecting microsporidia. PLoS Pathog. 19, e1011510. https://doi.org/10.1371/journal.ppat.1011510.
|
Wang, C., Skrobek, A., Butt, T.M., 2003. Concurrence of losing a chromosome and the ability to produce destruxins in a mutant of Metarhizium anisopliae. FEMS Microbiol. Lett. 226, 373-378.
|
Wang, L., Sun, Y., Sun, X., Yu, L., Xue, L., He, Z., Huang, J., Tian, D., Hurst, L.D., Yang, S., 2020. Repeat-induced point mutation in Neurospora crassa causes the highest known mutation rate and mutational burden of any cellular life. Genome Biol. 21, 1-23.
|
Wang, Y., Wu, J., Yan, J., Guo, M., Xu, L., Hou, L., Zou, Q., 2022. Comparative genome analysis of plant ascomycete fungal pathogens with different lifestyles reveals distinctive virulence strategies. BMC Genom. 23, 34. https://doi.org/10.1186/s12864-021-08165-1.
|
Wei, H., Zhong, Z., Li, Z., Zhang, Y., Stukenbrock, E.H., Tang, B., Yang, N., Baroncelli, R., Peng, L., Liu, Z., et al., 2023. Loss of the accessory chromosome converts a pathogenic tree root fungus into a mutualistic endophyte. Plant Commun. 100672.
|
Whelan, W.L., Soll, D.R., 1982. Mitotic recombination in Candida albicans: recessive lethal alleles linked to a gene required for methionine biosynthesis. Mol. Gen. Genet. MGG 187, 477-485.
|
Wieloch, W., 2006. Chromosome visualisation in filamentous fungi. J. Microbiol. Methods 67, 1-8. https://doi.org/10.1016/j.mimet.2006.05.022.
|
Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., et al., 2015. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 206, 1463-1475.
|
Xu, J., Wang, P., 2015. Mitochondrial inheritance in basidiomycete fungi. Spec. Issue Fungal Sex Mushrooms - Credit Lorna Casselton 29, 209-219. https://doi.org/10.1016/j.fbr.2015.02.001.
|
Yadav, V., Sun, S., Coelho, M.A., Heitman, J., 2020. Centromere scission drives chromosome shuffling and reproductive isolation. Proc. Natl. Acad. Sci. USA 117, 7917-7928.
|
Yang, H., Yu, H., Ma, L.-J., 2020. Accessory chromosomes in Fusarium oxysporum. Phytopathology 110, 1488-1496.
|
Yildirir, G., Sperschneider, J., Malar C, M., Chen, E.C., Iwasaki, W., Cornell, C., Corradi, N., 2022. Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytol. 233, 1097-1107.
|
Yin, Y., Miao, J., Shao, W., Liu, X., Zhao, Y., Ma, Z., 2023. Fungicide resistance: progress in understanding mechanism, monitoring, and management. Phytopathology 113, 707-718. https://doi.org/10.1094/PHYTO-10-22-0370-KD.
|
Zheng Qiushi, Liu Jing, Qin Juanxiu, Wang Bingjie, Bing Jian, Du Han, Li Min, Yu Fangyou, Huang Guanghua, 2022. Ploidy variation and spontaneous haploid-diploid switching of Candida glabrata clinical isolates. mSphere 7, e00260-22. https://doi.org/10.1128/msphere.00260-22.
|