9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 3
Mar.  2025
Turn off MathJax
Article Contents

Genetic and molecular mechanisms underlying nitrogen use efficiency in maize

doi: 10.1016/j.jgg.2024.10.007
Funds:

We thank Ronghui Ma, Yanfen Li, Zhuofeng Yang, Bo Yang, and students at China Agricultural University for their assistance in gathering pertinent references and for offering helpful suggestions. This work was financially supported by the National Key Research and Development Program of China (2021YFF1000500 to L.Y.), the High-Level Talents Research Startup Fund of China Agricultural University (00114342 and 10092010 to J.L.), and Pinduoduo-China Agricultural University Research Fund (PC2024B01009 to Z.J.).

  • Received Date: 2024-09-09
  • Accepted Date: 2024-10-23
  • Rev Recd Date: 2024-10-23
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-06
  • Nitrogen (N) is vital for crop growth and yield, impacting food quality. However, excessive use of N fertilizers leads to high agricultural costs and environmental challenges. This review offers a thorough synthesis of the genetic and molecular regulation of N uptake, assimilation, and remobilization in maize, emphasizing the role of key genes and metabolic pathways in enhancing N use efficiency (NUE). We summarize the genetic regulators of N transports for nitrate (NO3-) and ammonium (NH4+) that contribute to efficient N uptake and transportation. We further discuss the molecular mechanisms by which root system development adapts to N distribution and how N influences root system development and growth. Given the advancements in high-throughput microbiome studies, we delve into the impact of rhizosphere microorganisms on NUE and the complex plant–microbe interactions that regulate maize NUE. Additionally, we conclude with intricate regulatory mechanisms of N assimilation and remobilization in maize, involving key enzymes, transcription factors, and amino acid transporters. We also scrutinize the known N signaling perception and transduction mechanisms in maize. This review underscores the challenges in improving maize NUE and advocates for an integrative research approach that leverages genetic diversity and synthetic biology, paving the way for sustainable agriculture.
  • loading
  • Baer, M., Taramino, G., Multani, D., Sakai, H., Jiao, S., Fengler, K., Hochholdinger, F. 2023. Maize lateral rootless 1 encodes a homolog of the DCAF protein subunit of the CUL4-based E3 ubiquitin ligase complex. New Phytol. 237, 1204-1214.
    Bai, B., Liu, W., Qiu, X., Zhang, J., Zhang, J., Bai, Y. 2022. The root microbiome: Community assembly its contributions to plant fitness. J. Integr. Plant Biol. 64, 230-243.
    Becker, T.W., Carrayol, E., Hirel, B. 2000. Glutamine synthetase glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion their role in ammonium assimilation or nitrogen transport. Planta 211, 800-806.
    Bouguyon, E., Brun, F., Meynard, D., Kubes, M., Pervent, M., Leran, S., Lacombe, B., Krouk, G., Guiderdoni, E., Zazimalova, E., Hoyerova, K., Nacry, P., Gojon, A. 2015. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat. Plants 1, 15015.
    Cao, H., Liu, Z., Guo, J., Jia, Z., Shi, Y., Kang, K., Peng, W., Wang, Z., Chen, L., Neuhaeuser, B., Wang, Y., Liu, X., Hao, D., Yuan, L. 2024. ZmNRT1.1B (ZmNPF6.6 determines nitrogen use efficiency via regulation of nitrate transport signalling in maize. Plant Biotechnol. J. 22, 316-329.
    Cao, H., Qi, S., Sun, M., Li, Z., Yang, Y., Crawford, N. M., Wang, Y. 2017. Overexpression of the Maize ZmNLP6 and ZmNLP8 Can Complement the Arabidopsis Nitrate Regulatory Mutant nlp7 by Restoring Nitrate Signaling Assimilation. Front. Plant Sci. 8, 1703.
    Chen, F., Liu, J., Liu, Z., Chen, Z., Ren, W., Gong, X., Wang, L., Cai, H., Pan, Q., Yuan, L., Zhang, F., Mi, G. 2021. Breeding for high-yield nitrogen use efficiency in maize: Lessons from comparison between Chinese US cultivars. Adv. Agron. 166, 251-275.
    Chen, Z., Sun, J., Li, D., Li, P., He, K., Ali, F., Mi, G., Chen, F., Yuan, L., Pan, Q. 2022. Plasticity of root anatomy during domestication of a maize-teosinte derived population. J. Exp. Bot. 73, 139-153.
    Crawford, N.M., Glass, A.D.M. 1998. Molecular physiological aspects of nitrate uptake in plants. Trends Plant Sci., 3: 389-395.
    Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., Zhang, W., Mi, G., Miao, Y., Li, X., et al. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363-366.
    Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., et al. 2017. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 8, 1147.
    Favela, A., O Bohn, M., D Kent, A. 2021. Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. ISME J. 15, 2454-2464.
    Favela, A., O Bohn, M., D Kent, A. 2022. N-Cycling Microbiome Recruitment Differences Between Modern Wild Zea mays. Phytobiomes Journal 6, 151-160.
    Feng, F., Qi, W., Lv, Y., Yan, S., Xu, L., Yang, W., Yuan, Y., Chen, Y., Zhao, H., Song, R. 2018. OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development Nutrient Metabolism. Plant Cell 30, 375-396.
    Fox, T., DeBruin, J., Haug Collet, K., Trimnell, M., Clapp, J., Leonard, A., Li, B., Scolaro, E., Collinson, S., Glassman, K., et al. 2017. A single point mutation in Ms44 results in dominant male sterility improves nitrogen use efficiency in maize. Plant Biotechnol J. 15, 942-952.
    Gao J., Feng P., Zhang J., Dong C., Wang Z., Chen M., Yu Z., Zhao B., Hou X., Wang H., et al. 2023. Enhancing maize's nitrogen-fixing potential through ZmSBT3, a gene suppressing mucilage secretion. J. Integr. Plant Biol. 65, 2645-2659.
    Fredes, I., Moreno, S., Diaz, F. P., Gutierrez, R. A. 2019. Nitrate signaling the control of Arabidopsis growth development. Curr. Opin. Plant Biol. 47, 112-118.
    Gao, Y., Qi, S., Wang, Y. 2022. Nitrate signaling use efficiency in crops. Plant Commu 3, 100353.
    Garnett, T., Conn, V., Plett, D., Conn, S., Zanghellini, J., Mackenzie, N., Enju, A., Francis, K., Holtham, L., Roessner, U., et al. 2013. The response of the maize nitrate transport system to nitrogen demand supply across the lifecycle. New Phytol. 198, 82-94.
    Ge, M., Wang, Y.C., Liu, Y.H., Jiang, L., He, B., Ning, L.H., Du, H.Y., Lv, Y.D., Zhou, L., Lin, F., et al. 2020. The NIN-like protein 5 (ZmNLP5 transcription factor is involved in modulating the nitrogen response in maize. Plant Journal 102, 353-368.
    Genre, A., Lanfranco, L., Perotto, S., Bonfante, P. 2020. Unique common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18, 649-660.
    George, J., Holtham, L., Sabermanesh, K., Heuer, S., Tester, M., Plett, D., Garnett, T. 2016. Small amounts of ammonium (NH4+) can increase growth of maize (Zea mays). Journal of Plant Nutrition Soil Science 179, 717-725.
    Gojon, A., Krouk, G., Perrine Walker, F., Laugier, E. 2011. Nitrate transceptor(s) in plants. J. Exp. Bot. 62, 2299-2308.
    Gong, X., Liu, X., Pan, Q., Mi, G., Chen, F., Yuan, L. 2020. Combined physiological, transcriptome, genetic analysis reveals a molecular network of nitrogen remobilization in maize. J. Exp. Bot. 71, 5061-5073.
    Govindarajulu, M. et al. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819-823.
    Gu, R., Duan, F., An, X., Zhang, F., von Wiren, N., Yuan, L. 2013. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiology 54, 1515-1524.
    Guo, Y., Wang, Y., Chen, H., Du, Q., Wang, Z., Gong, X., Sun, Q., Li, W.X. 2023. Nitrogen supply affects ion homeostasis by modifying root Casparian strip formation through the miR528-LAC3 module in maize. Plant Commu 4, 100553.
    Han, M., Okamoto, M., Beatty, P., Rothstein, S., Good, A. The Genetics of Nitrogen Use Efficiency in Crop Plants. 2015. Annu. Rev. Genet. 49: 269-289.
    He, X., Wang, D., Jiang, Y., et al. 2024. Heritable microbiome variation is correlated with source environment in locally adapted maize varieties. Nat. Plants 10, 598-617.
    He, K., Zhao, Z., Ren, W., Chen, Z., Chen, L., Chen, F., Mi, G., Pan, Q., Yuan, L. 2023. Mining genes regulating root system architecture in maize based on data integration analysis. Theor. Appl. Genet. 136.
    Hirel, B., Bertin, P., Quillere, I., Bourdoncle, W., Attagnant, C., Dellay, C., Gouy, A., Cadiou, S., Retailliau, C., Falque, M., Gallais, A. 2001. Towards a better understanding of the genetic physiological basis for nitrogen use efficiency in maize. Plant Physiol. 125, 1258-1270.
    Hiruma, K., Gerlach, N., Sacristan, S., et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165, 464-474.
    Ho, C.H., Lin, S.H., Hu, H.C., Tsay, Y.F. 2009. CHL1 functions as a nitrate sensor in plants. Cell 138, 1184-1194.
    Hochholdinger, F., Yu, P., Marcon, C. 2018. Genetic control of root system development in maize. Trends Plant Sci. 23, 79-88.
    Hodge, A., Fitter, A.H. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implication for N cycling. Proc. Natl. Acad. Sci. U. S. A. 107, 13754-13759.
    Hu, B., Jiang, Z., Wang, W., Qiu, Y., Zhang, Z., Liu, Y., Li, A., Gao, X., Liu, L., Qian, Y., et al. 2019. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen phosphorus signaling networks in plants. Nat. Plants 5, 401-413.
    Hu, B., Wang, W., Chen, J., Liu, Y., Chu, C. 2023. Genetic improvement toward nitrogen-use efficiency in rice: Lessons perspectives. Mol. Plant 16, 64-74.
    Huang, Y., Wang, H., Zhu, Y., Huang, X., Li, S., Wu, X., Zhao, Y., Bao, Z., Qin, L., Jin, Y., Cui, Y., Ma, G., Xiao, Q., Wang, Q., Wang, J., Yang, X., Liu, H., Lu, X., Larkins, B.A., Wang, W., Wu, Y. 2022. THP9 enhances seed protein content nitrogen-use efficiency in maize. Nature 612, 292-300.
    Hui, J., An, X., Li, Z., Neuhauser, B., Ludewig, U., Wu, X., Schulze, W.X., Chen, F., Feng, G., Lambers, H., Zhang, F., Yuan, L. 2022a. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. Plant Cell 34, 4066-4087.
    Hui, J., Liu, Z., Duan, F., Zhao, Y., Li, X., An, X., Wu, X., Yuan, L. 2022b. Ammonium-dependent regulation of ammonium transporter ZmAMT1s expression conferred by glutamine levels in roots of maize. J. Integr. Agric. 21, 2413-2421.
    Ibrahim, A., Jin, X.L., Zhang, Y.B., Cruz, J., Vichyavichien, P., Esiobu, N., Zhang, X.H. 2017. Tobacco plants expressing the maize nitrate transporter ZmNrt2.1 exhibit altered responses of growth gene expression to nitrate calcium. Bot. Stud. 58, 51.
    Jia, Z.T., Giehl, R.F.H., Meyer, R.C., Altmann, T., von Wiren, N. 2019. Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nature Commu. 10, 2378.
    Jia, Z.T., Giehl, R.F.H. von Wiren, N. 2020. The root foraging response under low nitrogen depends on DWARF1-mediated brassinosteroid biosynthesis. Plant Physiol. 183, 998-1010.
    Jia, Z.T., Giehl, R.F.H. von Wiren, N. 2021. Local auxin biosynthesis acts downstream of brassinosteroids to trigger root foraging for nitrogen. Nature Commu. 12, 5437.
    Jia, Z.T., Giehl, R.F.H. von Wiren, N. 2022. Nutrient-hormone relations: Driving root plasticity in plants. Mol. Plant 15, 86-103.
    Jin H., Pfeffer P.E., Douds D.D., Piotrowski E., Lammers P.J., ShacharHill Y. 2005. The uptake, metabolism, transport transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol. 168, 687-696.
    Johansen, A., Finlay, R. D. Olsson, P. A. 1996. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133, 705-712.
    Kelliher, T. et al. 2019. One-step genome editing of elite crop germplasm during haploid induction. Nature Biotec. 37, 287-292.
    Konishi M., Yanagisawa S. 2011. Roles of the transcriptional regulation mediated by the nitrate-responsive cis-element in higher plants. Biochem. Biophys. Res. Commun. 411, 708-713.
    Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., Ohsugi, R. 2011. Introduction of the ZmDof1 gene into rice enhances carbon nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol. J. 9, 826-837.
    Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N.P., Fu, X. 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600.
    Li P, Zhang Z, Xiao G, Zhao Z, He K, Yang X, Pan Q, Mi G, Jia Z, Yan J, Chen F, Yuan L. 2024a. Genomic basis determining root system architecture in maize. Theor. Appl. Genet. 137, 102.
    Kwak, M.J., Kong, H.G., Choi, K., Kwon, S.K., Song, J.Y., Lee, J., Lee, P.A., Choi, S.Y., Seo, M., Lee, H.J., et al. 2018. Rhizosphere microbiome structure lters to enable wilt resistance in tomato. Nature Biotec. 36, 1100-1109.
    Li, S., Ji, M., Liu, F., Zhu, M., Yang, Y., Zhang, W., Liu, S., Wang, Y., Lv, W., Qi, S. 2024b. NRG2 family members of Arabidopsis maize regulate nitrate signaling promote nitrogen use efficiency. Physiol. Plant. 176, e14251.
    Li, P., Zhuang, Z., Cai, H., Cheng, S., Soomro, AA., Liu, Z., Gu, R., Mi, G., Yuan, L., Chen, F. 2016. Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency. J. Integr. Plant Biol. 58, 242-253.
    Liu, Y., Wang, H., Jiang, Z., Wang, W., Xu, R., Wang, Q., Zhang, Z., Li, A., Liang, Y., Ou, S., et al. 2021. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590, 600-605.
    Liu, Y., Jia, Z., Li, X., Wang, Z., Chen, F., Mi, G., Forde, B., Takahashi, H., Yuan, L. 2020. Involvement of a truncated MADS-box transcription factor ZmTMM1 in root nitrate foraging. J. Exp. Bot. 71, 4547-4561.
    Liu, K.H., Liu, M., Lin, Z., Wang, Z.F., Chen, B., Liu, C., Guo, A., Konishi, M., Yanagisawa, S., Wagner, G., Sheen, J. 2022a. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science 377, 1419-1425.
    Liu, Q., Wu, K., Song, W., Zhong, N., Wu, Y., Fu, X. 2022b. Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution. Annu. Rev. Plant Biol. 73, 523-551.
    Lin, J., Bjoerk, P., Kolte, M., Poulsen, E., Dedic, E., Drace, T., Andersen, S., Nadzieja, M., Liu, H., Castillo-Michel, H., et al. 2024. Zinc mediates control of nitrogen fixation via transcription factor filamentation. Nature 631,164-169.
    Liu, Q., Cheng, L., Nian, H., Jin, J., Lian, T. 2023. Linking plant functional genes to rhizosphere microbes: a review. Plant Biotechnol. J. 21, 902-917.
    Lupini, A., Mercati, F., Araniti, F., Miller, A.J., Sunseri, F., Abenavoli, M.R. 2016. NAR2.1/NRT2.1 functional interaction with NO3- H+ fluxes in high-affinity nitrate transport in maize root regions. Plant Physiol. Biochem. 102, 107-114.
    Lynch, J.P. 2013. Steep, cheap deep: an ideotype to optimize water N acquisition by maize root systems. Annals of Botany 112, 347-357.
    Ma J., Wang W., Yang J., Qin S., Yang Y., Sun C., Pei G., Zeeshan M., Liao H., Liu L., Huang J. 2022. Mycorrhizal Symbiosis Promotes the Nutrient Content Accumulation Affects the Root Exudates in Maize. BMC Plant Biology 22, 64.
    Martin, A., Lee, J., Kichey, T., et al. 2006. Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production. Plant Cell 18, 3252-3274.
    Meng, X., Yu, X., Wu, Y., Kim, D.H., Nan, N., Cong, W., Wang, S., Liu, B., Xu, Z.Y. 2020. Chromatin Remodeling Protein ZmCHB101 Regulates Nitrate-Responsive Gene Expression in Maize. Front. Plant Sci. 11, 52.
    Mi, G., Chen, F., Yuan, L., Zhang, F. 2016. Ideotype Root System Architecture for Maize to Achieve High Yield Resource Use Efficiency in Intensive Cropping Systems. Adv. Agron. 139, 73-97.
    Ning, L., Wang, Y., Shi, X., Zhou, L., Ge, M., Liang, S., Wu, Y., Zhang, T., Zhao, H. 2023. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein carbohydrate storage in maize endosperm. Plant Cell 35, 409-434.
    Oldroyd, G.E.D. 2013. Speak, friend, enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11, 252-263.
    Pal, G., Saxena, S., Kumar, K., Verma, A., Kumar, D., Shukla, P., Pandey, A., White, J., Verma, S.K. 2024. Seed endophytic bacterium Lysinibacillus sp. (ZM1 from maize (Zea mays L.) shapes its root architecture through modulation of auxin biosynthesis nitrogen metabolism. Plant Physiol. Biochem. 212, 108731.
    Pan, X., Hasan, M.M., Li, Y., Liao, C., Zheng, H., Liu, R., Li, X. 2015. Asymmetric transcriptomic signatures between the cob florets in the maize ear under optimal- low-nitrogen conditions at silking, functional characterization of amino acid transporters ZmAAP4 ZmVAAT3. J. Exp. Bot. 66, 6149-6166.
    Plett, D., Toubia, J., Garnett, T., Tester, M., Kaiser, B.N., Baumann, U. 2010. Dichotomy in the NRT gene families of dicots grass species. PLoS One 5, e15289.
    Postma, J.A., Lynch, J.P. 2011. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, potassium. Plant Physiol. 156, 1190-1201.
    Prinsi, B., Espen, L. 2015. Mineral nitrogen sources differently affect root glutamine synthetase isoforms amino acid balance among organs in maize. BMC Plant Biology 15, 96.
    Redinbaugh, M.G., Campbell, W.H. 1993. Glutamine Synthetase and Ferredoxin-Dependent Glutamate Synthase Expression in the Maize (Zea mays) Root Primary Response to Nitrate (Evidence for an Organ-Specific Response). Plant Physiol. 101, 1249e1255.
    Ren, W., Zhao, L., Liang, J., Wang, L., Chen, L., Li, P., Liu, Z., Li, X., Zhang, Z., Li, J., et al. 2022. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nat. Plants 8, 1408-1422.
    Robertson, G.P., Vitousek, P.M. 2009. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 34, 97-125.
    Schneider, H.M., Lor, V.S.N., Hanlon, M.T., Perkins, A., Kaeppler, S.M., Borkar, A.N., Bhosale, R., Zhang, X., Rodriguez, J., Bucksch, A., Bennett, M.J., Brown, K.M., Lynch, J.P. 2022. Root angle in maize influences nitrogen capture is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15. Plant Cell Envir. 45, 837-853.
    Schneider, H.M., Lor, V.S., Zhang, X., Saengwilai, P., Hanlon, M.T., Klein, S.P., Davis, J.L., Borkar, A.N., Depew, C.L., Bennett, M.J., et al. 2023. Transcription factor bHLH121 regulates root cortical aerenchyma formation in maize. Proc. Natl. Acad. Sci. U. S. A. 120, e2219668120.
    Sheoran, S., Kumar, S., Kumar, P., Meena, R.S., Rakshit, S. 2021. Nitrogen fixation in maize: breeding opportunities. Theor. Appl. Genet. 134, 1263-1280.
    Shi, J., Wang, X., Wang, E. 2023. Mycorrhizal Symbiosis in Plant Growth Stress Adaptation: From Genes to Ecosystems. Annu. Rev. Plant Biol. 74, 569-607.
    Sun J, Bankston J R, Payandeh J, Hinds T R, Zagotta W N, Zheng N. 2014. Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507, 73-77.
    Sun, Q., Liu, X., Yang, J., Liu, W., Du, Q., Wang, H., Fu, C. Li, W.X. 2018. MicroRNA528 Affects Lodging Resistance of Maize by Regulating Lignin Biosynthesis under Nitrogen-Luxury Conditions. Mol. Plant 11, 806-814.
    Trevisan, S., Borsa, P., Botton, A., Varotto, S., Malagoli, M., Ruperti, B., Quaggiotti, S. 2008. Expression of two maize putative nitrate transporters in response to nitrate sugar availability. Plant Biol. 10, 462-475.
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., Singh, B. K. 2020. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607-621.
    Tsay Y.F. Plant science: how to switch affinity. 2014. Nature 2014, 507, 44-45.
    Van Deynze, A., Zamora, P., Delaux, P.M., et al. 2018. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol. 16, e2006352.
    Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H. 2019. Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding. Mol. Plant 12, 597-602.
    Vidal, E.A., Alvarez, J.M., Moyano, T.C., Gutierrez, R.A. 2015. Transcriptional networks in the nitrate response of Arabidopsis thaliana. Curr. Opin. Plant Biol. 27, 125-132.
    Walters, W.A., Strickland, M.S., et al. 2018. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. U. S. A. 115, 7368-7373.
    Wang, S., Chen, A., Xie, K., Yang, X., Luo, Z., Chen, J., Zeng, D., Ren, Y., Yang, C., Wang, L., Feng, H., Lopez Arredondo, D. L., Herrera Estrella, L. R., Xu, G. 2020a. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc. Natl. Acad. Sci. U. S. A. 117, 16649-16659.
    Wang, T., Li, Y., Huang, Y., Zhao, X., Dong, Z., Jin, W., Huang, W. 2022. Amino acid permease 6 regulates grain protein content in maize. Crop J. 10, 1536-1544.
    Wang, X., Wang, H.F., Chen, Y., Sun, M.M., Wang, Y., Chen, Y.F. 2020b. The Transcription Factor NIGT1.2 Modulates Both Phosphate Uptake Nitrate Influx during Phosphate Starvation in Arabidopsis Maize. Plant Cell 32, 3519-3534.
    Wang, W., Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., Ou, S., Liu, Y., Zhang, Z., Wang, H., et al. 2018. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield early maturation in rice. Plant Cell 30, 638-651.
    Wang D, He X, Baer M, Lami K, Yu B, Tassinari A, Salvi S, Schaaf G, Hochholdinger F, Yu P. 2024a. Lateral root enriched Massilia associated with plant flowering in maize. Microbiome 12, 124.
    Wang, R., Zhong, Y., Han, J., Huang, L., Wang, Y., Shi, X., Li, M., Zhuang, Y., Ren, W., Liu, X., Cao, H., Xin, B., Lai, J., Chen, L., Chen, F., Yuan, L., Wang, Y., Li X. 2024c. NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression enhances root biomass in maize seedlings under low nitrogen. Plant Cell 25, koae184.
    Wei, Y.M., Ren, Z.J., Wang, B.H., Zhang, L., Zhao, Y.J., Wu, J.W., Li, L.G., Zhang, X.S., Zhao, X.Y. 2021. A nitrate transporter encoded by ZmNPF7.9 is essential for maize seed development. Plant Science 308, 110901.
    Wen, Z., Tyerman, S.D., Dechorgnat, J., Ovchinnikova, E., Dhugga, K.S., Kaiser, B.N. 2017. Maize NPF6 Proteins Are Homologs of Arabidopsis CHL1 That Are Selective for Both Nitrate Chloride. Plant Cell 29, 2581-2596.
    Wen, Z. L., Yang, M. K., Du, M. H., Zhong, Z. Z., Lu, Y. T., Wang, G. H., Hua, X. M., Fazal, A., Mu, C. H., Yan, S. F., Zhen, Y., Yang, R. W., Qi, J. L., Hong, Z., Lu, G. H., Yang, Y. H. 2019. Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Front. Microbiol. 10, 1335.
    Wu, J.R., Lawit, S.J., Weers, B., et al. 2019. Overexpression of zmm28 increases maize grain yield in the field. Proc. Natl. Acad. Sci. U. S. A. 116, 23850-23858.
    Wu, Q., Xu, J., Zhao, Y., Wang, Y., Zhou, L., Ning, L., Shabala, S., Zhao, H. 2024. Transcription factor ZmEREB97 regulates nitrate uptake in maize (Zea mays) roots. Plant Physiol. 196, 535-550.
    Xie, X., Wang, Y., Datla, R. Ren, M. 2021 Auxin Target of Rapamycin Spatiotemporally Regulate Root Organogenesis. Int. J. Mol. Sci. 22, 11357.
    Xing J., Feng, Y., Zhang, Y., et al. 2024a. Ethylene accelerates maize leaf senescence in response to nitrogen deficiency by regulating chlorophyll metabolism autophagy. Crop J. DOI: 10.1016/j.cj.2024.05.006.
    Xing, J., Wang, Y., Yao, Q., Zhang, Y., Zhang, M. Li, Z. 2022 Brassinosteroids modulate nitrogen physiological response promote nitrogen uptake in maize (Zea mays L.). Crop J. 10, 166-176.
    Xing, J., Zhang, J., Wang, Y., Wei, X., Yin, Z., Zhang, Y., Pu, A., Dong, Z, Long, Y., Wan, X. 2024b. Mining genic resources regulating nitrogen-use efficiency based on integrative biological analyses their breeding applications in maize other crops. Plant J. 117, 1148-1164.
    Xu, G., Fan, X., Miller, A.J. 2012. Plant nitrogen assimilation use efficiency. Annu. Rev. Plant Biol. 63, 153-182.
    Xu, N., Wang, R., Zhao, L., Zhang, C., Li, Z., Lei, Z., Liu, F., Guan, P., Chu, Z., Crawford, N.M., Wang, Y. 2016. The Arabidopsis NRG2 Protein Mediates Nitrate Signaling Interacts with Regulates Key Nitrate Regulators. Plant Cell 28, 485-504.
    Yu, P., Eggert, K., von Wiren, N., Li, C., Hochholdinger, F. 2015. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation. Plant Physiol. 169, 690-704.
    Yu, P., He, X.M., Baer, M., et al. 2021. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 7, 481-499.
    Yu, P., White, P.J., Hochholdinger, F., Li, C. 2014. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 240, 667-678.
    Yang, B., Wang, J., Yu, M., Zhang, M., Zhong, Y., Wang, T., Liu, P., Song, W., Zhao, H., Fastner, A., Suter, M., Rentsch, D., Ludewig, U., Jin, W., Geiger, D., Hedrich, R., Braun, D.M., Koch, K.E., McCarty, D.R., Wu, W.-H., Li, X., Wang, Y. Lai, J. 2022. The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. Plant Cell 34, 4232-4254.
    Zhang, Q. 2007. Strategies for developing green super rice. Proc. Natl. Acad. Sci. U. S. A. 104, 16402-16409.
    Zhang, L., Chia, J.M., Kumari, S., Stein, J.C., Liu, Z., Narechania, A., Maher, C.A., Guill, K., McMullen, M.D., Ware, D. 2009. A genome-wide characterization of microRNA genes in maize. PLoS Genet. 5, e1000716.
    Zhang, Q., Chu, Y., Xue, Y., Ying, H., Chen, X., Zhao, Y., Ma, W., Ma, L., Zhang, J., Yin, Y., Cui, Z. 2020. Outlook of China's agriculture transforming from smallholder operation to sustainable production. Global Food Security-Agriculture Policy Economics Environment 26, 100444.
    Zhang, J., Fengler, K.A., Van Hemert, J.L., Gupta, R., Mongar, N., Sun, J., Allen, W.B., Wang, Y., Weers, B., Mo, H., Lafitte, R., Hou, Z., Bryant, A., Ibraheem, F., Arp, J., Swaminathan, K., Li, B., Shen, B. 2019. Identification characterization of a novel stay green QTL that increases yield in maize. Plant Biotechnol. J. 17, 2272-2285.
    Zhang, L., Zhang, M., Huang, S., Li, L., Gao, Q., Wang, Y., Zhang, S., Huang, S., Yuan, L., Wen, Y., Liu, K., Yu, X., Li, D., Zhang, L., Xu, X., Wei, H., He, P., Zhou, W., Philippot, L., Ai, C. 2022. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Commu. 13, 3361.
    Zhao, Y., Liu, Z., Duan, F., An, X., Liu, X., Hao, D., Gu, R., Wang, Z., Chen, F., Yuan, L. 2018. Overexpression of the maize ZmAMT1;1a gene enhances root ammonium uptake efficiency under low ammonium nutrition. Plant Biotec. Rep. 12, 47-56.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return