9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 3
Mar.  2025
Turn off MathJax
Article Contents

Natural variation of CT2 affects the embryo/kernel weight ratio in maize

doi: 10.1016/j.jgg.2024.09.012
Funds:

This work was supported by National Key Research and Development Program of China (2023YFF1000400), National Natural Science Foundation of China (32101693), Key Research and Development Program of Shaanxi (2021ZDLNY01-06), and Agricultural Science and Technology Innovation Program of CAAS (CAAS-ZDRW202004). LMAD and ABD were supported by Hatch project (1019088). We thank the Teaching and Research Core Facility at College of Life Science, NWAFU for the technical support.

  • Received Date: 2024-06-07
  • Accepted Date: 2024-09-22
  • Rev Recd Date: 2024-09-22
  • Available Online: 2025-07-11
  • Publish Date: 2024-09-27
  • Embryo size is a critical trait determining not only grain yield but also the nutrition of the maize kernel. Up to the present, only a few genes have been characterized affecting the maize embryo/kernel ratio. Here, we identify 63 genes significantly associated with maize embryo/kernel weight ratio using a genome-wide association study (GWAS). The peak GWAS signal shows that the natural variation in Zea mays COMPACT PLANT2 (CT2), encoding the heterotrimeric G protein α subunit, is significantly associated with the Embryo/Kernel Weight Ratio (EKWR). Further analyses show that a missense mutation of CT2 increases its enzyme activity and associates with EKWR. The function of CT2 on affecting embryo/kernel weight ratio is further validated by the characterization of two ct2 mutants, for which EKWR is significantly decreased. Subsequently, the key downstream genes of CT2 are identified by combining the differential expression analysis of the ct2 mutant and quantitative trait transcript analysis in the GWAS population. In addition, the allele frequency spectrum shows that CT2 was under selective pressure during maize domestication. This study provides important genetic insights into the natural variation of maize embryo/kernel weight ratio, which could be applied in future maize breeding programs to improve grain yield and nutritional content.
  • loading
  • Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169.
    Audic, S., Claverie, J.M., 1997. The significance of digital gene expression profiles. Genome Res. 7, 986-995.
    Bass, H.W., Webster, C., Obrian, G.R., Roberts, J.K.M., Boston, R.S., 1992. A maize ribosome-inactivating protein is controlled by the transcriptional activator Opaque-2. Plant Cell 4, 225-234.
    Beissinger, T.M., Wang, L., Crosby, K., Durvasula, A., Hufford, M.B., Ross-Ibarra, J., 2016. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2, 16084.
    Bommert, P., Il Je, B., Goldshmidt, A., Jackson, D., 2013. The maize G alpha gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502, 555-558.
    Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S., 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633-2635.
    Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C., Ersoz, E., Flint-Garcia, S., Garcia, A., Glaubitz, J.C. et al., 2009. The genetic architecture of maize flowering time. Science 325, 714-718.
    Bukowski, R., Guo, X., Lu, Y., Zou, C., He, B., Rong, Z., Wang, B., Xu, D., Yang, B., Xie, C. et al., 2018. Construction of the third-generation Zea mays haplotype map. GigaScience 7, 1-12.
    Chen, J., Zeng, B., Zhang, M., Xie, S., Wang, G., Hauck, A., Lai, J., 2014. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol. 166, 252-264.
    Chen, Q.Y., Yang, C.J., York, A.M., Xue, W., Daskalska, L.L., DeValk, C.A., Krueger, K.W., Lawton, S.B., Spiegelberg, B.G., Schnell, J.M. et al., 2019. TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics 213, 1065-1078.
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T. et al., 2011. The variant call format and VCFtools. Bioinformatics 27.
    Fang, H., Fu, X., Wang, Y., Xu, J., Feng, H., Li, W., Xu, J., Jittham, O., Zhang, X., Zhang, L. et al., 2020. Genetic basis of kernel nutritional traits during maize domestication and improvement. Plant J. 101, 278-292.
    Flint-Garcia, S.A., Bodnar, A.L., Scott, M.P., 2009. Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte. Theor. Appl. Genet. 119, 1129-1142.
    Fu, J., Cheng, Y., Linghu, J., Yang, X., Kang, L., Zhang, Z., Zhang, J., He, C., Du, X., Peng, Z. et al., 2013. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat. Commun. 4, 2832.
    Grintzalis, K., Georgiou, C.D., Schneider, Y.J., 2015. An accurate and sensitive Coomassie Brilliant Blue G-250-based assay for protein determination. Anal. Biochem. 480, 28-30.
    Guo, T., Chen, K., Dong, N.-Q., Shi, C.-L., Ye, W.-W., Gao, J.-P., Shan, J.-X., Lin, H.-X., 2018. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell 30, 871-888.
    Hufford, M.B., Seetharam, A.S., Woodhouse, M.R., Chougule, K.M., Ou, S., Liu, J., Ricci, W.A., Guo, T., Olson, A., Qiu, Y. et al., 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655-662.
    Hutchison, C.E., Li, J., Argueso, C., Gonzalez, M., Lee, E., Lewis, M.W., Maxwell, B.B., Perdue, T.D., Schaller, G.E., Alonso, J.M. et al., 2006. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18, 3073-3087.
    Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360.
    Kurepa, J., Wang, S., Li, Y., Zaitlin, D., Pierce, A.J., Smalle, J.A., 2009. Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs. Plant Physiol. 150, 178-189.
    Lafon-Placette, C., Kohler, C., 2014. Embryo and endosperm, partners in seed development. Curr. Opin. Plant Biol. 17, 64-69.
    Lee, G., Piao, R.H., Lee, Y., Kim, B., Seo, J., Lee, D., Jang, S., Jin, Z., Lee, C., Chin, J.H. et al., 2019. Identification and characterization of LARGE EMBRYO, a new gene controlling embryo size in rice (L.). Rice 12.
    Letunic, I., Bork, P., 2021. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293-W296.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Genome Project Data Processing, S., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
    Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yang, N. et al., 2013a. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 45, 43-50.
    Li, J., Nie, X., Tan, J.L.H., Berger, F., 2013b. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A 110, 15479-15484.
    Li, Q., Wang, J.C., Ye, J.W., Zheng, X.X., Xiang, X.L., Li, C.S., Fu, M.M., Wang, Q., Zhang, Z.Y., Wu, Y.R., 2017. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell 29, 2661-2675.
    Li, X., Wang, M., Zhang, R., Fang, H., Fu, X., Yang, X., Li, J., 2022. Genetic architecture of embryo size and related traits in maize. Crops J. 10, 204-215.
    Liu, J., Hua, W., Hu, Z., Yang, H., Zhang, L., Li, R., Deng, L., Sun, X., Wang, X., Wang, H., 2015. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc. Natl. Acad. Sci. U. S. A 112, E5123-E5132.
    Liu, M., Tan, X.L., Yang, Y., Liu, P., Zhang, X.X., Zhang, Y.C., Wang, L., Hu, Y., Ma, L.L., Li, Z.L. et al., 2020. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol. J. 18, 207-221.
    Liu, Z., Yang, X., Fu, Y., Zhang, Y., Yan, J., Song, T., Rocheford, T., Li, J., 2009. Proteomic analysis of early germs with high-oil and normal inbred lines in maize. Mol. Biol. Rep. 36, 813-821.
    Luo, J., Liu, H., Zhou, T., Gu, B., Huang, X., Shangguan, Y., Zhu, J., Li, Y., Zhao, Y., Wang, Y. et al., 2013. An-1 Encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 25, 3360-3376.
    Luo, M., Dennis, E.S., Berger, F., Peacock, W.J., Chaudhury, A., 2005. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A 102, 17531-17536.
    Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D. et al., 2015. COLD1 confers chilling tolerance in rice. Cell 160, 1209-1221.
    Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17, 10-12.
    Nagasawa, N., Hibara, K., Heppard, E.P., Vander Velden, K.A., Luck, S., Beatty, M., Nagato, Y., Sakai, H., 2013. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J. 75, 592-605.
    Noguero, M., Le Signor, C., Vernoud, V., Bandyopadhyay, K., Sanchez, M., Fu, C., Torres-Jerez, I., Wen, J., Mysore, K.S., Gallardo, K. et al., 2015. DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. Plant J. 81, 453-466.
    Pandey, S., 2019. Heterotrimeric G-protein signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 70, 213-238.
    Song, X.J., Huang, W., Shi, M., Zhu, M.Z., Lin, H.X., 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39, 623-630.
    Suzuki, M., Sato, Y., Wu, S., Kang, B.H., McCarty, D.R., 2015. Conserved functions of the MATE transporter BIG EMBRYO1 in regulation of lateral organ size and initiation rate. Plant Cell 27, 2288-2300.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.
    Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura, A., Kitano, H., Matsuoka, M., Fujisawa, Y. et al., 2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17, 776-790.
    Tian, F., Bradbury, P.J., Brown, P.J., Hung, H., Sun, Q., Flint-Garcia, S., Rocheford, T.R., McMullen, M.D., Holland, J.B., Buckler, E.S., 2011. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 43, 159-162.
    Tong, H., Liu, L., Jin, Y., Du, L., Yin, Y., Qian, Q., Zhu, L., Chu, C., 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24, 2562-2577.
    Urano, D., Colaneri, A., Jones, A.M., 2014. Galpha modulates salt-induced cellular senescence and cell division in rice and maize. J. Exp. Bot. 65, 6553-6561.
    Wang, B., Lin, Z., Li, X., Zhao, Y., Zhao, B., Wu, G., Ma, X., Wang, H., Xie, Y., Li, Q. et al., 2020. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52, 565-571.
    Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., Yang, X., Qin, F., 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233-1241.
    Xie, G., Li, Z., Ran, Q., Wang, H., Zhang, J., 2018. Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnol. J. 16, 234-244.
    Yang, N., Liu, J., Gao, Q., Gui, S., Chen, L., Yang, L., Huang, J., Deng, T., Luo, J., He, L. et al., 2019. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51, 1052-1059.
    Yang, X.H., Gao, S.B., Xu, S.T., Zhang, Z.X., Prasanna, B.M., Li, L., Li, J.S., Yan, J.B., 2011. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 28, 511-526.
    Zhang, Y., Du, L., Xu, R., Cui, R., Hao, J., Sun, C., Li, Y., 2015. Transcription Factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. Plant Cell 27, 620-632.
    Zheng, L.J., Zhang, X.G., Zhang, H.J., Gu, Y., Huang, X.R., Huang, H.H., Liu, H.M., Zhang, J.J., Hu, Y.F., Li, Y.P. et al., 2019. The miR164-dependent regulatory pathway in developing maize seed. Mol. Genet. Genom. 294, 501-517.
    Zheng, P., Allen, W.B., Roesler, K., Williams, M.E., Zhang, S., Li, J., Glassman, K., Ranch, J., Nubel, D., Solawetz, W. et al., 2008. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat. Genet. 40, 367-372.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return