9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 4
Apr.  2025
Turn off MathJax
Article Contents

ERVcancer: a web resource designed for querying activation of human endogenous retroviruses across major cancer types

doi: 10.1016/j.jgg.2024.09.004
Funds:

We gratefully acknowledge Dr. Guihu Zhao and members of the Yuan Lab for inspiring discussions and technical assistance. This project has been supported by the National Natural Science Foundation of China (32370821, 32170821, and 92153301 to K.Y), National Key Research and Development Program of China (2021YFC2701200), Department of Science & Technology of Hunan Province (2023RC1028, and 2023SK2091 to K.Y), Middle/Young aged Teachers' Research Ability Improvement Project of Guangxi Higher Education (2024KY0111 to X.L), and Joint Project on Regional High-Incidence Diseases Research of Guangxi Natural Science Foundation (2023JJB140356 to X.L).

  • Received Date: 2024-05-13
  • Accepted Date: 2024-09-05
  • Rev Recd Date: 2024-09-04
  • Available Online: 2025-07-11
  • Publish Date: 2024-09-10
  • Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, integrated into the dynamic regulatory network of cellular potency during early embryonic development. In recent studies, resurgent the transcriptional activity of HERVs has been frequently observed in many types of human cancers, suggesting their potential functions in the occurrence and progression of malignancy. However, a dedicated web resource for querying the relationship between the activation of HERVs and cancer development is lacking. Here, we construct a database to explore the sequence information, expression profiles, survival prognosis, and genetic interactions of HERVs in diverse cancer types. Our database currently contains RNA sequencing data of 580 HERVs across 16,246 samples, including that of 6478 tumoral and 634 normal tissues, 932 cancer cell lines, as well as 151 early embryonic and 8051 human adult tissues. The primary goal is to provide an easily accessible and user-friendly database for professionals in the fields of bioinformatics, pathology, pharmacology, and related areas, enabling them to efficiently screen the activity of HERVs of interest in normal and cancerous tissues and evaluate the clinical relevance. The ERVcancer database is available at http://kyuanlab.com/ervcancer/.
  • loading
  • Ai, Z.P., Xiang, X.Y., Xiang, Y.Q., Szczerbinska, I., Qian, Y.L., Xu, X., Ma, C.Y., Su, Y.Q., Gao, B., Shen, H., et al., 2022. Kruppel-like factor 5 rewires NANOG regulatory network to activate human naive pluripotency specific LTR7Ys and promote naive pluripotency. Cell Rep. 40, 111240.
    Asimi, V., Kumar, A.S., Niskanen, H., Riemenschneider, C., Hetzel, S., Naderi, J., Fasching, N., Popitsch, N., Du, M.Y., Kretzmer, H., et al., 2022. Hijacking of transcriptional condensates by endogenous retroviruses. Nat. Genet. 54, 1238-1247.
    Attig, J., Pape, J., Doglio, L., Kazachenka, A., Ottina, E., Young, G.R., Enfield, K.S.S., Aramburu, I.V., Ng, K.W., Faulkner, N., et al., 2023. Human endogenous retrovirus onco-exaptation counters cancer cell senescence through calbindin. J. Clin. Invest. 133, e164397.
    Babaian, A., Mager, D.L., 2016. Endogenous retroviral promoter exaptation in human cancer. Mobile DNA 7, 24.
    Bao, W.D., Kojima, K.K., Kohany, O., 2015. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA 6, 11.
    Berdasco, M., Esteller, M., 2010. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev. Cell 19, 698-711.
    Bian, Z.H., Jin, L.G., Zhang, J.W., Yin, Y., Quan, C., Hu, Y.L., Feng, Y.Y., Liu, H.Y., Fei, B.J., Mao, Y., et al., 2016. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci. Rep. 6, 23892.
    Bogu, G.K., Reverter, F., Marti-Renom, M.A., Snyder, M.P., Guigo, R., 2019. Atlas of transcriptionally active transposable elements in human adult tissues. bioRxiv doi: https://www.biorxiv.org/content/10.1101/714212v1.
    Chen, S., Xiao, Z., Zhou, J., Yang, M.L., Feng, S.J., Huang, Q.L., Zou, J., Zeng, T., Li, Y.K., Peng, L.J., et al., 2020. ZNF382: a transcription inhibitor down-regulated in multiple tumors due to promoter methylation. Clin. Chim. Acta 500, 220-225.
    Chuong, E.B., Elde, N.C., Feschotte, C., 2016. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083-1087.
    Cortesi, A., Gandolfi, F., Arco, F., Di Chiaro, P., Valli, E., Polletti, S., Noberini, R., Gualdrini, F., Attanasio, S., Citron, F., et al., 2024. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. Sci. Adv. 10, eadk5386.
    Cosby, R.L., Chang, N.C., Feschotte, C., 2019. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev. 33, 1098-1116.
    de Parseval, N., Heidmann, T., 2005. Human endogenous retroviruses: from infectious elements to human genes. Cytogenet. Genome Res. 110, 318-332.
    de Tribolet-Hardy, J., Thorball, C.W., Forey, R., Planet, E., Duc, J., Coudray, A., Khubieh, B., Offner, S., Pulver, C., Fellay, J., et al., 2023. Genetic features and genomic targets of human KRAB-zinc finger proteins. Genome Res. 33, 1409-1423.
    Deschamps-Francoeur, G., Simoneau, J., Scott, M.S., 2020. Handling multi-mapped reads in RNA-seq. Comput. Struct. Biotechnol. J. 18, 1569-1576.
    Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
    Dolei, A., 2018. The aliens inside us: HERV-W endogenous retroviruses and multiple sclerosis. Mult. Scler. J. 24, 42-47.
    Dopkins, N., Nixon, D.F., 2024. Activation of human endogenous retroviruses and its physiological consequences. Nat. Rev. Mol. Cell Biol. 25, 212-222.
    Du, Z.H., Zhang, K., Xie, W., 2022. Epigenetic reprogramming in early animal development. CSH Perspect. Biol. 14, a039677.
    Dunham, I., Kundaje, A., Aldred, S.F., Collins, P.J., Davis, C., Doyle, F., Epstein, C.B., Frietze, S., Harrow, J., Kaul, R., et al., 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74.
    Fueyo, R., Judd, J., Feschotte, C., Wysocka, J., 2022. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481-497.
    Ghandi, M., Huang, F.W., Jane-Valbuena, J., Kryukov, G.V., Lo, C.C., McDonald, E.R., Barretina, J., Gelfand, E.T., Bielski, C.M., Li, H., et al., 2019. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503-508.
    Gimenez, J., Montgiraud, C., Pichon, J.P., Bonnaud, B., Arsac, M., Ruel, K., Bouton, O., Mallet, F., 2010. Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res. 38, 2229-2246.
    Goerner-Potvin, P., Bourque, G., 2018. Computational tools to unmask transposable elements. Nat. Rev. Genet. 19, 688-704.
    Goke, J., Lu, X.Y., Chan, Y.S., Ng, H.H., Ly, L.H., Sachs, F., Szczerbinska, I., 2015. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16, 135-141.
    Goldman, M.J., Craft, B., Hastie, M., Repecka, K., McDade, F., Kamath, A., Banerjee, A., Luo, Y.H., Rogers, D., Brooks, A.N., et al., 2020. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675-678.
    Gong, X.L., He, W., Jin, W., Ma, H.W., Wang, G., Li, J.X., Xiao, Y., Zhao, Y.Y., Chen, Q., Guo, H.H., et al., 2024. Disruption of maternal vascular remodeling by a fetal endoretrovirus-derived gene in preeclampsia. Genome Biol. 25, 117.
    Groh, S., Schotta, G., 2017. Silencing of endogenous retroviruses by heterochromatin. Cell. Mol. Life Sci. 74, 2055-2065.
    Grow, E.J., Flynn, R.A., Chavez, S.L., Bayless, N.L., Wossidlo, M., Wesche, D.J., Martin, L., Ware, C.B., Blish, C.A., Chang, H.Y., et al., 2015. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221-225.
    He, J.P., Babarinde, I.A., Sun, L., Xu, S.Y., Chen, R.H., Shi, J.J., Wei, Y.J., Li, Y.H., Ma, G., Zhuang, Q., et al., 2021. Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nat. Commun. 12, 1456.
    Helleboid, P.Y., Heusel, M., Duc, J., Piot, C., Thorball, C.W., Coluccio, A., Pontis, J., Imbeault, M., Turelli, P., Aebersold, R., et al., 2019. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification. EMBO J. 38, e101220.
    Hubley, R., Finn, R.D., Clements, J., Eddy, S.R., Jones, T.A., Bao, W.D., Smit, A.F.A., Wheelers, T.J., 2016. The Dam database of repetitive DNA families. Nucleic Acids Res. 44, D81-D89.
    Imbeault, M., Helleboid, P.Y., Trono, D., 2017. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550-554.
    Ito, J., Kimura, I., Soper, A., Coudray, A., Koyanagi, Y., Nakaoka, H., Inoue, I., Turelli, P., Trono, D., Sato, K., 2020. Endogenous retroviruses drive KRAB zinc-finger protein family expression for tumor suppression. Sci. Adv. 6, eabc3020.
    Jang, H.S., Shah, N.M., Du, A.Y., Dailey, Z.Z., Pehrsson, E.C., Godoy, P.M., Zhang, D., Li, D.F., Xing, X.Y., Kim, S., et al., 2019. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51, 611-617.
    Jern, P., Coffin, J.M., 2008. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42, 709-732.
    Johansson, E.M., Bouchet, D., Tamouza, R., Ellul, P., Morr, A.S., Avignone, E., Germi, R., Leboyer, M., Perron, H., Groc, L., 2020. Human endogenous retroviral protein triggers deficit in glutamate synapse maturation and behaviors associated with psychosis. Sci. Adv. 6, eabc0708.
    Kong, Y., Rose, C.M., Cass, A.A., Williams, A.G., Darwish, M., Lianoglou, S., Haverty, P.M., Tong, A.J., Blanchette, C., Albert, M.L., et al., 2019. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228.
    Lander, E.S., Consortium, I.H.G.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., et al., 2001. Initial sequencing and analysis of the human genome. Nature 409, 860-921.
    Lee, B.T., Barber, G.P., Benet-Pages, A., Casper, J., Clawson, H., Diekhans, M., Fischer, C., Gonzalez, J.N., Hinrichs, A.S., Lee, C.M., et al., 2022. The UCSC Genome Browser database: 2022 update. Nucleic Acids Res. 50, D1115-D1122.
    Levet, S., Charvet, B., Bertin, A., Deschaumes, A., Perron, H., Hober, D., 2019. Human endogenous retroviruses and type 1 diabetes. Curr. Diabetes Rep. 19, 141.
    Li, C.D., Qian, Q.H., Yan, C.H., Lu, M.M., Li, L., Li, P., Fan, Z.J., Lei, W.Y., Shang, K., Wang, P.H., et al., 2024. HervD Atlas: a curated knowledgebase of associations between human endogenous retroviruses and diseases. Nucleic Acids Res. 52, D1315-D1326.
    Li, L., Li, Y.S., Lv, L., Yuan, K., 2022. Rewiring the transcriptional circuitries in cancer by endogenous retroviruses. J. Mol. Cell Biol. 14, mjac053.
    Li, X.H., Wu, X.L., Li, W.S., Yan, Q.J., Zhou, P., Xia, Y.R., Yao, W., Zhu, F., 2023. HERV-W ENV induces innate immune activation and neuronal apoptosis via linc01930/cGAS Axis in recent-onset schizophrenia. Int. J. Mol. Sci. 24, 3000.
    Liang, Y., Qu, X., Shah, N.M., Wang, T., 2024. Towards targeting transposable elements for cancer therapy. Nat. Rev. Cancer 24, 123-140.
    Liao, Y., Smyth, G.K., Shi, W., 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923-930.
    Liu, J.F., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack, A.D., Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A.V., et al., 2018. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400-416.
    Liu, X.Q., Liu, Z.P., Wu, Z.M., Ren, J., Fan, Y.L., Sun, L., Cao, G., Niu, Y.Y., Zhang, B.H., Ji, Q.Z., et al., 2023. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 186, 287-304.
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
    Michalak, E.M., Burr, M.L., Bannister, A.J., Dawson, M.A., 2019. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat. Rev. Mol. Cell Biol. 20, 573-589.
    Najafabadi, H.S., Mnaimneh, S., Schmitges, F.W., Garton, M., Lam, K.N., Yang, A., Albu, M., Weirauch, M.T., Radovani, E., Kim, P.M., et al., 2015. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nat. Biotechnol. 33, 555-562.
    Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A.V., Mikheenko, A., Vollger, M.R., Altemose, N., Uralsky, L., Gershman, A., et al., 2022. The complete sequence of a human genome. Science 376, 44-53.
    Paces, J., Pavlicek, A., Zika, R., Kapitonov, V.V., Jurka, J., Paces, V., 2004. HERVd: the human endogenous RetroViruses database: update. Nucleic Acids Res. 32, D50-D50.
    Padmanabhan Nair, V., Liu, H., Ciceri, G., Jungverdorben, J., Frishman, G., Tchieu, J., Cederquist, G.Y., Rothenaigner, I., Schorpp, K., Klepper, L., et al., 2021. Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell 28, 1566-1581.
    Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C., 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417-419.
    Rowe, H.M., Jakobsson, J., Mesnard, D., Rougemont, J., Reynard, S., Aktas, T., Maillard, P.V., Layard-Liesching, H., Verp, S., Marquis, J., et al., 2010. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237-240.
    Russ, E., Iordanskiy, S., 2023. Endogenous retroviruses as modulators of innate immunity. Pathogens 12, 162.
    Saghafinia, S., Mina, M., Riggi, N., Hanahan, D., Ciriello, G., 2018. Pan-cancer landscape of aberrant DNA methylation across human tumors. Cell Rep. 25, 1066-1080.
    Sakashita, A., Kitano, T., Ishizu, H., Guo, Y.J., Masuda, H., Ariura, M., Murano, K., Siomi, H., 2023. Transcription of MERVL retrotransposons is required for preimplantation embryo development. Nat. Genet. 55, 484-495.
    Shah, A.H., Rivas, S.R., Doucet-O'Hare, T.T., Govindarajan, V., DeMarino, C., Wang, T.G., Ampie, L., Zhang, Y., Banasavadi-Siddegowda, Y.K., Walbridge, S., et al., 2023. Human endogenous retrovirus K contributes to a stem cell niche in glioblastoma. J. Clin. Invest. 133, e167929.
    Smit, A., Hubley, R., Green, P., 2013-2015. RepeatMasker open-4.0. http://www.repeatmasker.org.
    Soleimani-Jelodar, R., Arashkia, A., Shoja, Z., Akhavan, S., Yarandi, F., Sharifian, K., Farahmand, M., Nili, F., Jalilvand, S., 2024. The expression analysis of human endogenous retrovirus-K Env, Np9, and Rec transcripts in cervical cancer. J. Med. Virol. 96, e29501.
    Stricker, E., Peckham-Gregory, E.C., Scheurer, M.E., 2023. CancerHERVdb: human endogenous retrovirus (HERV) expression database for human cancer accelerates studies of the retrovirome and predictions for HERV-based therapies. J. Virol. 97, e0005923.
    Tamouza, R., Meyer, U., Foiselle, M., Richard, J.R., Wu, C.L., Boukouaci, W., Le Corvoisier, P., Barrau, C., Lucas, A., Perron, H., et al., 2021. Identification of inflammatory subgroups of schizophrenia and bipolar disorder patients with HERV-W ENV antigenemia by unsupervised cluster analysis. Transl. Psychiatry. 11, 377.
    Tokuyama, M., Kong, Y., Song, E., Jayewickreme, T., Kang, I., Iwasaki, A., 2018. ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. Proc. Natl. Acad. Sci. U.S.A. 115, 12565-12572.
    Treangen, T.J., Salzberg, S.L., 2012. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36-46.
    Wang-Johanning, F., Li, M., Esteva, F.J., Hess, K.R., Yin, B.N., Rycaj, K., Plummer, J.B., Garza, J.G., Ambs, S., Johanning, G.L., 2014. Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. Int. J. Cancer 134, 587-595.
    Wang, C.J., Zhu, C.C., Xu, J., Wang, M., Zhao, W.Y., Liu, Q., Zhao, G., Zhang, Z.Z., 2019. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Mol. Cancer 18, 115.
    Wang, J.C., Lu, X.Y., Zhang, W.Q., Liu, G.H., 2024. Endogenous retroviruses in development and health. Trends Microbiol. 32, 342-354.
    Wang, J.C., Xie, G.C., Singh, M., Ghanbarian, A.T., Rasko, T., Szvetnik, A., Cai, H.Q., Besser, D., Prigione, A., Fuchs, N.V., et al., 2014. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405-409.
    Wang, J.H., Ren, M., Yu, J.D., Hu, M.T., Wang, X.J., Ma, W.C., Jiang, X.Q., Cui, J., 2022. Single-cell RNA sequencing highlights the functional role of human endogenous retroviruses in gallbladder cancer. EBioMedicine 85, 104319.
    Wu, X.L., Liu, L.Z., Xue, X., Li, X.H., Zhao, K.X., Zhang, J.H., Li, W.S., Yao, W., Ding, S., Jia, C., et al., 2023a. Captive ERVWE1 triggers impairment of 5-HT neuronal plasticity in the first-episode schizophrenia by post-transcriptional activation of HTR1B in ALKBH5-m6A dependent epigenetic mechanisms. Cell Biosci. 13, 213.
    Wu, X.L., Yan, Q.J., Liu, L.Z., Xue, X., Yao, W., Li, X.H., Li, W.S., Ding, S., Xia, Y.R., Zhang, D.Y., et al., 2023b. Domesticated HERV-W env contributes to the activation of the small conductance Ca2+-activated K+ type 2 channels via decreased 5-HT4 receptor in recent-onset schizophrenia. Virol. Sin. 38, 9-22.
    Xue, X., Wu, X.L., Liu, L.J., Liu, L.Z., Zhu, F., 2023. ERVW-1 activates ATF6-mediated unfolded protein response by decreasing GANAB in recent-onset schizophrenia. Viruses 15, 1298.
    Xue, Z.G., Huang, K., Cai, C.C., Cai, L.B., Jiang, C.Y., Feng, Y., Liu, Z.S., Zeng, Q., Cheng, L.M., Sun, Y.E., et al., 2013. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593-597.
    Yan, L.Y., Yang, M.Y., Guo, H.S., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X.Y., Yan, J., et al., 2013. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol.20, 1131-1139.
    Yan, Q.J., Wu, X.L., Zhou, P., Zhou, Y., Li, X.H., Liu, Z.C., Tan, H.W., Yao, W., Xia, Y.R., Zhu, F., 2022. HERV-W envelope triggers abnormal dopaminergic neuron process through DRD2/PP2A/AKT1/GSK3 for schizophrenia risk. Viruses 14, 145.
    Yang, B., Fang, L., Gao, Q.Q., Xu, C., Xu, J.Q., Chen, Z.X., Wang, Y.X., Yang, P., 2022. Species-specific KRAB-ZFPs function as repressors of retroviruses by targeting PBS regions. Proc. Natl. Acad. Sci. U.S.A. 119, e2119415119.
    Yao, W., Zhou, P., Yan, Q.J., Wu, X.L., Xia, Y.R., Li, W.S., Li, X.H., Zhu, F., 2023. ERVWE1 reduces hippocampal neuron density and impairs dendritic spine morphology through inhibiting wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Viruses 15, 168.
    Yu, C.H., Lei, X.Y., Chen, F., Mao, S., Lv, L., Liu, H.L., Hu, X.Y., Wang, R.H., Shen, L.C., Zhang, N., et al., 2022. ARID1A loss derepresses a group of human endogenous retrovirus-H loci to modulate BRD4-dependent transcription. Nat. Commun. 13, 3501.
    Yu, H., Liu, T., Zhao, Z., Chen, Y., Zeng, J., Liu, S., Zhu, F., 2014. Mutations in 3'-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb. Oncogene 33, 3947-3958.
    Zhang, D.Y., Wu, X.L., Xue, X., Li, W.S., Zhou, P., Lv, Z., Zhao, K.X., Zhu, F., 2024. Ancient dormant virus remnant ERVW-1 drives ferroptosis via degradation of GPX4 and SLC3A2 in schizophrenia. Virol. Sin. 39, 31-43.
    Zhang, D.Z., Xie, J.J., Sun, F.X., Xu, R.Y., Liu, W.J., Xu, J., Huang, X., Zhang, G.B., 2024. Pharmacological suppression of HHLA2 glycosylation restores anti-tumor immunity in colorectal cancer. Cancer Lett. 589, 216819.
    Zhang, Y.X., Li, T., Preissl, S., Amaral, M.L., Grinstein, J.D., Farah, E.N., Destici, E., Qiu, Y.J., Hu, R., Lee, A.Y., et al., 2019. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat. Genet. 51, 1380-1388.
    Zhao, S., Lu, J.W., Pan, B., Fan, H.T., Byrum, S.D., Xu, C.X., Kim, A., Guo, Y.R., Kanchi, K.L., Gong, W.D., et al., 2023. TNRC18 engages H3K9me3 to mediate silencing of endogenous retrotransposons. Nature 623, 633-642.
    Zheng, H., Huang, B., Zhang, B.J., Xiang, Y.L., Du, Z.H., Xu, Q.H., Li, Y.Y., Wang, Q.J., Ma, J., Peng, X., et al., 2016. Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol. Cell 63, 1066-1079.
    Zhou, S.M., Sakashita, A., Yuan, S.Q., Namekawa, S.H., 2022. Retrotransposons in the mammalian male germline. Sex. Dev. 16, 404-422.
    Zhou, Y., Liu, L.J., Liu, Y.Y., Zhou, P., Yan, Q.J., Yu, H.L., Chen, X.B., Zhu, F., 2021. Implication of human endogenous retrovirus W family envelope in hepatocellular carcinoma promotes MEK/ERK-mediated metastatic invasiveness and doxorubicin resistance. Cell Death Dis. 7, 177.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return