Ando, K., Shih, Y.H., Ebarasi, L., Grosse, A., Portman, D., Chiba, A., Mattonet, K., Gerri, C., Stainier, D.Y.R., Mochizuki, N., et al., 2021. Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell development. Dev. Biol. 479, 11-22.
|
Ando, K., Wang, W., Peng, D., Chiba, A., Lagendijk, A.K., Barske, L., Crump, J.G., Stainier, D.Y.R., Lendahl, U., Koltowska, K., et al., 2019. Peri-arterial specification of vascular mural cells from naive mesenchyme requires Notch signaling. Development 146, dev165589.
|
Armulik, A., Genove, G., Mae, M., Nisancioglu, M.H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., et al., 2010. Pericytes regulate the blood-brain barrier. Nature 468, 557-561.
|
Borggrefe, T., Oswald, F., 2009. The Notch signaling pathway: Transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631-1646.
|
Chen, T., Chen, X., Zhang, S., Zhu, J., Tang, B., Wang, A., Dong, L., Zhang, Z., Yu, C., Sun, Y., et al., 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genom. Proteom. Bioinf. 19, 578-583.
|
Chen, X., Gays, D., Milia, C., Santoro, M.M., 2017. Cilia control vascular mural cell recruitment in vertebrates. Cell Rep. 18, 1033-1047.
|
Daneman, R., Zhou, L., Kebede, A.A., Barres, B.A., 2010. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562-566.
|
Hellstrom, M., Gerhardt, H., Kalen, M., Li, X.R., Eriksson, U., Wolburg, H., Betsholtz, C., 2001. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol. 153, 543-553.
|
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., Joung, J.K., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227-229.
|
Jang, I.H., Lu, Y.F., Zhao, L., Wenzel, P.L., Kume, T., Datta, S.M., Arora, N., Guiu, J., Lagha, M., Kim, P.G., et al., 2015. Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood 125, 1418-1426.
|
Kisler, K., Nelson, A.R., Rege, S.V., Ramanathan, A., Wang, Y., Ahuja, A., Lazic, D., Tsai, P.S., Zhao, Z., Zhou, Y., et al., 2017. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406-416.
|
Lindahl, P., Johansson, B.R., Leveen, P., Betsholtz, C., 1997. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242-245.
|
Members, C.-N., Partners, 2021. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 50, D27-D38.
|
Peppiatt, C.M., Howarth, C., Mobbs, P., Attwell, D., 2006. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700-704.
|
Shi, H., Koronyo, Y., Rentsendorj, A., Regis, G.C., Sheyn, J., Fuchs, D.T., Kramerov, A.A., Ljubimov, A.V., Dumitrascu, O.M., Rodriguez, A.R., et al., 2020. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathol. 139, 813-836.
|
Shih, Y.-H., Portman, D., Idrizi, F., Grosse, A., Lawson, N.D., 2021. Integrated molecular analysis identifies a conserved pericyte gene signature in zebrafish. Development 148, dev200189.
|
Sur, A., Wang, Y., Capar, P., Margolin, G., Prochaska, M.K., Farrell, J.A., 2023. Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development. Dev. Cell 58, 3028-3047.
|
Wang, Y., Pan, L., Moens, C.B., Appel, B., 2014. Notch3 establishes brain vascular integrity by regulating pericyte number. Development 141, 307-317.
|
Whitesell, T.R., Chrystal, P.W., Ryu, J.-R., Munsie, N., Grosse, A., French, C.R., Workentine, M.L., Li, R., Zhu, L.J., Waskiewicz, A., et al., 2019. foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish. Dev. Biol. 453, 34-47.
|
Zi, H., Peng, X., Cao, J., Xie, T., Liu, T., Li, H., Bu, J., Du, J., Li, J., 2024. Piezo1-dependent regulation of pericyte proliferation by blood flow during brain vascular development. Cell Rep. 43, 113652.
|