Cable, D.M., Murray, E., Zou, L.S., Goeva, A., Macosko, E.Z., Chen, F.,Irizarry, R.A., 2022. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517-526.
|
Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S.,Zhuang, X., 2015. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090.
|
Edsgard, D., Johnsson, P.,Sandberg, R., 2018. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods 15, 339-342.
|
Fan, Z., Chen, R.,Chen, X., 2020. SpatialDB: a database for spatially resolved transcriptomes. Nucleic Acids Res. 48, D233-D237.
|
Gao, R., Bai, S., Henderson, Y.C., Lin, Y., Schalck, A., Yan, Y., Kumar, T., Hu, M., Sei, E.,Davis, A., 2021. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 39, 599-608.
|
Guo, W., Wang, D., Wang, S., Shan, Y., Liu, C.,Gu, J., 2021. scCancer: a package for automated processing of single-cell RNA-seq data in cancer. Briefings Bioinf. 22.
|
Guo, T., Yuan, Z., Pan, Y., Wang, J., Chen, F., Zhang, M.Q.,Li, X., 2023. SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies. Genome Biol. 24, 241.
|
Jin, S., Plikus, M.V.,Nie, Q., 2023. CellChat for systematic analysis of cell-cell communication from single-cell and spatially resolved transcriptomics. https://www.biorxiv.org/content/10.1101/2023.11.05.565674v1.
|
Kleshchevnikov, V., Shmatko, A., Dann, E., Aivazidis, A., King, H.W., Li, T., Elmentaite, R., Lomakin, A., Kedlian, V.,Gayoso, A., 2022. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661-671.
|
Nichterwitz, S., Chen, G., Aguila Benitez, J., Yilmaz, M., Storvall, H., Cao, M., Sandberg, R., Deng, Q.,Hedlund, E., 2016. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nat. Commun. 7, 12139.
|
Rao, N., Clark, S.,Habern, O., 2020. Bridging genomics and tissue pathology: 10x genomics explores new frontiers with the visium spatial gene expression solution. Genet. Eng. Biotechnol. N. 40, 50-51.
|
Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O.,Huss, M., 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82.
|
Stickels, R.R., Murray, E., Kumar, P., Li, J., Marshall, J.L., Di Bella, D.J., Arlotta, P., Macosko, E.Z.,Chen, F., 2021. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39, 313-319.
|
Sun, D., Wang, J., Han, Y., Dong, X., Ge, J., Zheng, R., Shi, X., Wang, B., Li, Z.,Ren, P., 2021. TISCH: a comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 49, D1420-D1430.
|
Svensson, V., Teichmann, S.A.,Stegle, O., 2018. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343-346.
|
Wu, R., Guo, W., Qiu, X., Wang, S., Sui, C., Lian, Q., Wu, J., Shan, Y., Yang, Z., Yang, S., et al., 2021. Comprehensive analysis of spatial architecture in primary liver cancer. Sci. Adv. 7, eabg3750.
|
Yuan, H., Yan, M., Zhang, G., Liu, W., Deng, C., Liao, G., Xu, L., Luo, T., Yan, H., Long, Z., et al., 2019. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res. 47, D900-D908.
|
Yuan, Z., Pan, W., Zhao, X., Zhao, F., Xu, Z., Li, X., Zhao, Y., Zhang, M.Q.,Yao, J., 2023. SODB facilitates comprehensive exploration of spatial omics data. Nat. Methods 20, 387-399.
|
Zhou, W., Su, M., Jiang, T., Yang, Q., Sun, Q., Xu, K., Shi, J., Yang, C., Ding, N.,Li, Y., 2023. SORC: an integrated spatial omics resource in cancer. Nucleic Acids Res., gkad820.
|
Zhu, J., Sun, S.,Zhou, X., 2021. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 22, 184.
|