Ahbara, A. M., Musa, H. H., Robert, C., Abebe, A., Al-Jumaili, A. S., Kebede, A., Latairish, S., Agoub, M. O., Clark, E., Hanotte, O., et al., 2022. Natural adaptation and human selection of northeast African sheep genomes. Genomics, 114, 110448.
|
Alberto, F. J., Boyer, F., Orozco-terWengel, P., Streeter, I., Servin, B., de Villemereuil, P., Benjelloun, B., Librado, P., Biscarini, F., Colli, L., et al., 2018. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813.
|
Archibald, A. L., Cockett, N. E., Dalrymple, B. P., Faraut, T., Kijas, J. W., Maddox, J. F., McEwan, J. C., Hutton Oddy, V., Raadsma, H. W., Wade, C., et al., 2010. The sheep genome reference sequence: a work in progress. Anim. Genet. 41, 449-453.
|
Benjelloun, B., Leempoel, K., Boyer, F., Stucki, S., Streeter, I., Orozco-terWengel, P., Alberto, F. J., Servin, B., Biscarini, F., Alberti, A., et al., 2023. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Mol. Ecol. e17257.
|
Bolger, A. M., Lohse, M., Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.
|
Cao, Y. H., Xu, S. S., Shen, M., Chen, Z. H., Gao, L., Lv, F. H., Xie, X. L., Wang, X. H., Yang, H., Liu, C. B., et al., 2020. Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep. Mol. Biol. Evol. 38, 838-855.
|
Chen, N., Xia, X., Hanif, Q., Zhang, F., Dang, R., Huang, B., Lyu, Y., Luo, X., Zhang, H., Yan, H., et al., 2023. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing. Nat. Commun. 14, 7803.
|
da Silva, L. G., Kawanishi, K., Henschel, P., Kittle, A., Sanei, A., Reebin, A., Miquelle, D., Stein, A. B., Watson, A., Kekule, L. B., et al., 2017. Mapping black panthers: macroecological modeling of melanism in leopards (Panthera pardus). PLoS One 12, e0170378.
|
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., Depristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., Mcvean, G. & Durbin, R. 2011. The variant call format and vcftools. Bioinformatics, 27, 2156-2158.
|
Dong, K., Yang, M., Han, J., Ma, Q., Han, J., Song, Z., Luosang, C., Gorkhali, N. A., Yang, B., He, X., Ma, Y. & Jiang, L. 2020. Genomic analysis of worldwide sheep breeds reveals pdgfd as A major target of fat-tail selection in sheep. BMC Genom., 21, 800.
|
Edea, Z., Dadi, H., Dessie, T. & Kim, K. S. 2019. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genomics, 41, 973-981.
|
Eizirik, E. & Trindade, F. J. 2021. Genetics and evolution of mammalian coat pigmentation. Annu. Rev. Anim. Biosci., 9, 125-148.
|
Frichot, E., Schoville, S. D., Bouchard, G. & Francois, O. 2013. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol., 30, 1687-1699.
|
Harris, I., Osborn, T. J., Jones, P. & Lister, D. 2020. Version 4 of the cru ts monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109.
|
Hu, X. J., Yang, J., Xie, X. L., Lv, F. H., Cao, Y. H., Li, W. R., Liu, M. J., Wang, Y. T., Li, J. Q., Liu, Y. G., et al., 2019. The genome landscape of Tibetan sheep reveals adaptive introgressionfrom argali and the history of early human settlements on the Qinghai-Tibetan Plateau. Mol. Biol. Evol., 36, 283-303.
|
Jeong, J., Jang, S., Park, S., Kwon, W., Kim, S. Y., Jang, S., Ko, J., Park, S. J., Lim, S. G., Yoon, D., et al., 2021. Jazf1 heterozygous knockout mice show altered adipose development and metabolism. Cell Biosci., 11, 161.
|
Jin, M., Wang, H., Liu, G., Lu, J., Yuan, Z., Li, T., Liu, E., Lu, Z., Du, L. & Wei, C. 2024. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genet. Sel. Evol., 56, 26.
|
Johnston, S. E., Mcewan, J. C., Pickering, N. K., Kijas, J. W., Beraldi, D., Pilkington, J. G., Pemberton, J. M. & Slate, J. 2011. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in A wild sheep population. Mol. Ecol., 20, 2555-2566.
|
Jones, M. R., Mills, L. S., Alves, P. C., Callahan, C. M., Alves, J. M., Lafferty, D. J. R., Jiggins, F. M., Jensen, J. D., Melo-Ferreira, J. & Good, J. M. 2018. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science, 360, 1355-1358.
|
Kardos, M., Luikart, G., Bunch, R., Dewey, S., Edwards, W., Mcwilliam, S., Stephenson, J., Allendorf, F. W., Hogg, J. T. & Kijas, J. 2015. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol. Ecol., 24, 5616-5632.
|
Kim, E. S., Elbeltagy, A. R., Aboul-Naga, A. M., Rischkowsky, B., Sayre, B., Mwacharo, J. M. & Rothschild, M. F. 2016. Multiple genomic signatures of selection in goats and sheep indigenous to A hot arid environment. Heredity (Edinb), 116, 255-264.
|
Lee, H. Y., Jang, H. R., Li, H., Samuel, V. T., Dudek, K. D., Osipovich, A. B., Magnuson, M. A., Sklar, J. & Shulman, G. I. 2022. Deletion of Jazf1 gene causes early growth retardation and insulin resistance in mice. Proc. Natl. Acad. Sci. U. S. A., 119, E2213628119.
|
Li, C., Wu, Y., Chen, B., Cai, Y., Guo, J., Leonard, A. S., Kalds, P., Zhou, S., Zhang, J., Zhou, P., et al., 2022. Markhor-derived introgression of A genomic region encompassing Papss2 confers high-altitude adaptability in Tibetan goats. Mol. Biol. Evol., 39.
|
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. & Durbin, R. 2009. The sequence alignment/map format and Samtools. Bioinformatics, 25, 2078-2079.
|
Li, R., Li, C., Chen, H., Li, R., Chong, Q., Xiao, H. & Chen, S. 2020. Genome-wide scan of selection signatures in dehong humped cattle for heat tolerance and disease resistance. Anim. Genet., 51, 292-299.
|
Liu, X., Zhang, Y., Li, Y., Pan, J., Wang, D., Chen, W., Zheng, Z., He, X., Zhao, Q., Pu, Y., et al., 2019. Epas1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol. Biol. Evol., 36, 2591-2603.
|
Liu, X., Zhang, Y., Liu, W., Li, Y., Pan, J., Pu, Y., Han, J., Orlando, L., Ma, Y. & Jiang, L. 2022. A single-nucleotide mutation within the Tbx3 enhancer increased body size in Chinese horses. Curr. Biol., 32, 480-487 E6.
|
Lv, F.-H., Agha, S., Kantanen, J., Colli, L., Stucki, S., Kijas, J. W., Joost, S., Li, M.-H. & Ajmone Marsan, P. 2014. Adaptations to climate-mediated selective pressures in sheep. Mol. Biol. Evol., 31, 3324-3343.
|
Ma, Y. F., Han, X. M., Huang, C. P., Zhong, L., Adeola, A. C., Irwin, D. M., Xie, H. B. & Zhang, Y. P. 2019. Population genomics analysis revealed origin and high-altitude adaptation of Tibetan pigs. Sci. Rep., 9, 11463.
|
Mwacharo, J. M., Kim, E. S., Elbeltagy, A. R., Aboul-Naga, A. M., Rischkowsky, B. A. & Rothschild, M. F. 2017. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from east African and western Asia cohorts. Sci. Rep., 7, 17647.
|
Pan, Z., Li, S., Liu, Q., Wang, Z., Zhou, Z., Di, R., Miao, B., Hu, W., Wang, X., Hu, X., et al., 2018. Whole-genome sequences of 89 Chinese sheep suggest role of Rxfp2 in the development of unique horn phenotype as response to semi-feralization. GigaScience, 7, Giy019.
|
Shen, H., He, T., Wang, S., Hou, L., Wei, Y., Liu, Y., Mo, C., Zhao, Z., You, W., Guo, H. & Li, B. 2022. Sox4 promotes beige adipocyte-mediated adaptive thermogenesis by facilitating prdm16-pparγ complex. Theranostics, 12, 7699-7716.
|
Shi, S., Shao, D., Yang, L., Liang, Q., Han, W., Xue, Q., Qu, L., Leng, L., Li, Y., Zhao, X., et al., 2023. Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments. J. Adv. Res., 47, 13-25.
|
Shi, Y., Fan, S., Wu, M., Zuo, Z., Li, X., Jiang, L., Shen, Q., Xu, P., Zeng, L., Zhou, Y., et al., 2019. Ythdf1 links hypoxia adaptation and non-small cell lung cancer progression. Nat. Commun., 10, 4892.
|
Stucki, S., Orozco-Terwengel, P., Forester, B. R., Duruz, S., Colli, L., Masembe, C., Negrini, R., Landguth, E., Jones, M. R., Bruford, M. W., et al., 2017. High performance computation of landscape genomic models including local indicators of spatial association. Mol. Ecol. Resour., 17, 1072-1089.
|
Su, P., Wu, H., Huang, Y., Lu, X., Yin, J., Zhang, Q. & Lan, X. 2023. The hoof color of Australian white sheep is associated with genetic variation of the mitf gene. Animals (Basel), 13.
|
Tian, D., Han, B., Li, X., Liu, D., Zhou, B., Zhao, C., Zhang, N., Wang, L., Pei, Q. & Zhao, K. 2023. Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing. Anim. Biosci., 36, 991-1002.
|
Tsartsianidou, V., Sanchez-Molano, E., Kapsona, V. V., Basdagianni, Z., Chatziplis, D., Arsenos, G., Triantafyllidis, A. & Banos, G. 2021. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in mediterranean domestic sheep. Genet. Sel. Evol., 53, 90.
|
Wei, C., Wang, H., Liu, G., Wu, M., Cao, J., Liu, Z., Liu, R., Zhao, F., Zhang, L., Lu, J., et al.,2015. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genom., 16, 194.
|
Wu, D.-D., Yang, C.-P., Wang, M.-S., Dong, K.-Z., Yan, D.-W., Hao, Z.-Q., Fan, S.-Q., Chu, S.-Z., Shen, Q.-S., Jiang, L.-P., et al., 2019. Convergent genomic signatures of high-altitude adaptation among domestic mammals. Natl. Sci. Rev., 7, 952-963.
|
Wu, G., Baumeister, R. & Heimbucher, T. 2023. Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold. Cells, 12.
|
Xu, Y.-X., Wang, B., Jing, J.-N., Ma, R., Luo, Y.-H., Li, X., Yan, Z., Liu, Y.-J., Gao, L., Ren, Y.-L., et al., 2023. Whole-body adipose tissue multi-omic analyses in sheep reveal molecular mechanisms underlying local adaptation to extreme environments. Commun. Biol., 6, 159.
|
Yang, J., Li, W.-R., Lv, F.-H., He, S.-G., Tian, S.-L., Peng, W.-F., Sun, Y.-W., Zhao, Y.-X., Tu, X.-L., Zhang, M., Xie, X.-L., et al., 2016. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol., 33, 2576-2592.
|
Zhang, W., Jin, M., Lu, Z., Li, T., Wang, H., Yuan, Z. & Wei, C. 2023. Whole genome resequencing reveals selection signals related to wool color in sheep. Animals (Basel), 13.
|
Zhang, Y., Xue, X., Liu, Y., Abied, A., Ding, Y., Zhao, S., Wang, W., Ma, L., Guo, J., Guan, W., et al.,2021. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and poll dorset sheep. Sci. Rep., 11, 2466.
|
Zhao, F., Deng, T., Shi, L., Wang, W., Zhang, Q., Du, L. & Wang, L. 2020. Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types. Animals (Basel), 10.
|
Zhao, Y. X., Yang, J., Lv, F. H., Hu, X. J., Xie, X. L., Zhang, M., Li, W. R., Liu, M. J., Wang, Y. T., Li, J. Q., et al., 2017. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in east Asia. Mol. Biol. Evol., 34, 2380-2395.
|