8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

Whole-genome sequencing identifies functional genes for environmental adaptation in Chinese sheep

doi: 10.1016/j.jgg.2024.08.011
Funds:

This project was supported by the National Natural Science Foundation of China (32222079, 31961143021), the earmarked fund for the Modern Agro-industry Technology Research System (CARS-39-01), the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (ASTIP-IAS01), and National Key Research and Development Program of China (2022YFF1000104-3).

  • Received Date: 2024-02-22
  • Accepted Date: 2024-08-29
  • Rev Recd Date: 2024-08-28
  • Available Online: 2025-06-06
  • Publish Date: 2024-09-12
  • Sheep (Ovis aries), among the first domesticated species, are now globally widespread and exhibit remarkable adaptability to diverse environments. In this study, we perform whole-genome sequencing of 266 animals from 18 distinct Chinese sheep populations, each displaying unique phenotypes indicative of adaptation to varying environmental conditions. Integrating 131 environmental factors with single nucleotide polymorphism variations, we conduct a comprehensive genetic-environmental association analysis. This analysis identifies 35 key genes likely integral to the environmental adaptation of sheep. The functions of these genes include fat tail formation (HOXA10, HOXA11, JAZF1), wool characteristics (FER, FGF5, MITF, PDE4B), horn phenotypes (RXFP2), reproduction (HIBADH, TRIM71, C6H4orf22), and growth traits (ADGRL3, TRHDE). Notably, we observe a significant correlation between the frequency of missense mutations in the PAPSS2 and RXFP2 genes and variations in altitude. Our study reveals candidate genes for adaptive variation in sheep and demonstrates the diversity in how sheep adapt to their environment.
  • loading
  • Ahbara, A. M., Musa, H. H., Robert, C., Abebe, A., Al-Jumaili, A. S., Kebede, A., Latairish, S., Agoub, M. O., Clark, E., Hanotte, O., et al., 2022. Natural adaptation and human selection of northeast African sheep genomes. Genomics, 114, 110448.
    Alberto, F. J., Boyer, F., Orozco-terWengel, P., Streeter, I., Servin, B., de Villemereuil, P., Benjelloun, B., Librado, P., Biscarini, F., Colli, L., et al., 2018. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 813.
    Archibald, A. L., Cockett, N. E., Dalrymple, B. P., Faraut, T., Kijas, J. W., Maddox, J. F., McEwan, J. C., Hutton Oddy, V., Raadsma, H. W., Wade, C., et al., 2010. The sheep genome reference sequence: a work in progress. Anim. Genet. 41, 449-453.
    Benjelloun, B., Leempoel, K., Boyer, F., Stucki, S., Streeter, I., Orozco-terWengel, P., Alberto, F. J., Servin, B., Biscarini, F., Alberti, A., et al., 2023. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Mol. Ecol. e17257.
    Bolger, A. M., Lohse, M., Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.
    Cao, Y. H., Xu, S. S., Shen, M., Chen, Z. H., Gao, L., Lv, F. H., Xie, X. L., Wang, X. H., Yang, H., Liu, C. B., et al., 2020. Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep. Mol. Biol. Evol. 38, 838-855.
    Chen, N., Xia, X., Hanif, Q., Zhang, F., Dang, R., Huang, B., Lyu, Y., Luo, X., Zhang, H., Yan, H., et al., 2023. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing. Nat. Commun. 14, 7803.
    da Silva, L. G., Kawanishi, K., Henschel, P., Kittle, A., Sanei, A., Reebin, A., Miquelle, D., Stein, A. B., Watson, A., Kekule, L. B., et al., 2017. Mapping black panthers: macroecological modeling of melanism in leopards (Panthera pardus). PLoS One 12, e0170378.
    Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., Depristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., Mcvean, G. & Durbin, R. 2011. The variant call format and vcftools. Bioinformatics, 27, 2156-2158.
    Dong, K., Yang, M., Han, J., Ma, Q., Han, J., Song, Z., Luosang, C., Gorkhali, N. A., Yang, B., He, X., Ma, Y. & Jiang, L. 2020. Genomic analysis of worldwide sheep breeds reveals pdgfd as A major target of fat-tail selection in sheep. BMC Genom., 21, 800.
    Edea, Z., Dadi, H., Dessie, T. & Kim, K. S. 2019. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genomics, 41, 973-981.
    Eizirik, E. & Trindade, F. J. 2021. Genetics and evolution of mammalian coat pigmentation. Annu. Rev. Anim. Biosci., 9, 125-148.
    Frichot, E., Schoville, S. D., Bouchard, G. & Francois, O. 2013. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol., 30, 1687-1699.
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. 2020. Version 4 of the cru ts monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109.
    Hu, X. J., Yang, J., Xie, X. L., Lv, F. H., Cao, Y. H., Li, W. R., Liu, M. J., Wang, Y. T., Li, J. Q., Liu, Y. G., et al., 2019. The genome landscape of Tibetan sheep reveals adaptive introgressionfrom argali and the history of early human settlements on the Qinghai-Tibetan Plateau. Mol. Biol. Evol., 36, 283-303.
    Jeong, J., Jang, S., Park, S., Kwon, W., Kim, S. Y., Jang, S., Ko, J., Park, S. J., Lim, S. G., Yoon, D., et al., 2021. Jazf1 heterozygous knockout mice show altered adipose development and metabolism. Cell Biosci., 11, 161.
    Jin, M., Wang, H., Liu, G., Lu, J., Yuan, Z., Li, T., Liu, E., Lu, Z., Du, L. & Wei, C. 2024. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genet. Sel. Evol., 56, 26.
    Johnston, S. E., Mcewan, J. C., Pickering, N. K., Kijas, J. W., Beraldi, D., Pilkington, J. G., Pemberton, J. M. & Slate, J. 2011. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in A wild sheep population. Mol. Ecol., 20, 2555-2566.
    Jones, M. R., Mills, L. S., Alves, P. C., Callahan, C. M., Alves, J. M., Lafferty, D. J. R., Jiggins, F. M., Jensen, J. D., Melo-Ferreira, J. & Good, J. M. 2018. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science, 360, 1355-1358.
    Kardos, M., Luikart, G., Bunch, R., Dewey, S., Edwards, W., Mcwilliam, S., Stephenson, J., Allendorf, F. W., Hogg, J. T. & Kijas, J. 2015. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol. Ecol., 24, 5616-5632.
    Kim, E. S., Elbeltagy, A. R., Aboul-Naga, A. M., Rischkowsky, B., Sayre, B., Mwacharo, J. M. & Rothschild, M. F. 2016. Multiple genomic signatures of selection in goats and sheep indigenous to A hot arid environment. Heredity (Edinb), 116, 255-264.
    Lee, H. Y., Jang, H. R., Li, H., Samuel, V. T., Dudek, K. D., Osipovich, A. B., Magnuson, M. A., Sklar, J. & Shulman, G. I. 2022. Deletion of Jazf1 gene causes early growth retardation and insulin resistance in mice. Proc. Natl. Acad. Sci. U. S. A., 119, E2213628119.
    Li, C., Wu, Y., Chen, B., Cai, Y., Guo, J., Leonard, A. S., Kalds, P., Zhou, S., Zhang, J., Zhou, P., et al., 2022. Markhor-derived introgression of A genomic region encompassing Papss2 confers high-altitude adaptability in Tibetan goats. Mol. Biol. Evol., 39.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. & Durbin, R. 2009. The sequence alignment/map format and Samtools. Bioinformatics, 25, 2078-2079.
    Li, R., Li, C., Chen, H., Li, R., Chong, Q., Xiao, H. & Chen, S. 2020. Genome-wide scan of selection signatures in dehong humped cattle for heat tolerance and disease resistance. Anim. Genet., 51, 292-299.
    Liu, X., Zhang, Y., Li, Y., Pan, J., Wang, D., Chen, W., Zheng, Z., He, X., Zhao, Q., Pu, Y., et al., 2019. Epas1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses. Mol. Biol. Evol., 36, 2591-2603.
    Liu, X., Zhang, Y., Liu, W., Li, Y., Pan, J., Pu, Y., Han, J., Orlando, L., Ma, Y. & Jiang, L. 2022. A single-nucleotide mutation within the Tbx3 enhancer increased body size in Chinese horses. Curr. Biol., 32, 480-487 E6.
    Lv, F.-H., Agha, S., Kantanen, J., Colli, L., Stucki, S., Kijas, J. W., Joost, S., Li, M.-H. & Ajmone Marsan, P. 2014. Adaptations to climate-mediated selective pressures in sheep. Mol. Biol. Evol., 31, 3324-3343.
    Ma, Y. F., Han, X. M., Huang, C. P., Zhong, L., Adeola, A. C., Irwin, D. M., Xie, H. B. & Zhang, Y. P. 2019. Population genomics analysis revealed origin and high-altitude adaptation of Tibetan pigs. Sci. Rep., 9, 11463.
    Mwacharo, J. M., Kim, E. S., Elbeltagy, A. R., Aboul-Naga, A. M., Rischkowsky, B. A. & Rothschild, M. F. 2017. Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from east African and western Asia cohorts. Sci. Rep., 7, 17647.
    Pan, Z., Li, S., Liu, Q., Wang, Z., Zhou, Z., Di, R., Miao, B., Hu, W., Wang, X., Hu, X., et al., 2018. Whole-genome sequences of 89 Chinese sheep suggest role of Rxfp2 in the development of unique horn phenotype as response to semi-feralization. GigaScience, 7, Giy019.
    Shen, H., He, T., Wang, S., Hou, L., Wei, Y., Liu, Y., Mo, C., Zhao, Z., You, W., Guo, H. & Li, B. 2022. Sox4 promotes beige adipocyte-mediated adaptive thermogenesis by facilitating prdm16-pparγ complex. Theranostics, 12, 7699-7716.
    Shi, S., Shao, D., Yang, L., Liang, Q., Han, W., Xue, Q., Qu, L., Leng, L., Li, Y., Zhao, X., et al., 2023. Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments. J. Adv. Res., 47, 13-25.
    Shi, Y., Fan, S., Wu, M., Zuo, Z., Li, X., Jiang, L., Shen, Q., Xu, P., Zeng, L., Zhou, Y., et al., 2019. Ythdf1 links hypoxia adaptation and non-small cell lung cancer progression. Nat. Commun., 10, 4892.
    Stucki, S., Orozco-Terwengel, P., Forester, B. R., Duruz, S., Colli, L., Masembe, C., Negrini, R., Landguth, E., Jones, M. R., Bruford, M. W., et al., 2017. High performance computation of landscape genomic models including local indicators of spatial association. Mol. Ecol. Resour., 17, 1072-1089.
    Su, P., Wu, H., Huang, Y., Lu, X., Yin, J., Zhang, Q. & Lan, X. 2023. The hoof color of Australian white sheep is associated with genetic variation of the mitf gene. Animals (Basel), 13.
    Tian, D., Han, B., Li, X., Liu, D., Zhou, B., Zhao, C., Zhang, N., Wang, L., Pei, Q. & Zhao, K. 2023. Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing. Anim. Biosci., 36, 991-1002.
    Tsartsianidou, V., Sanchez-Molano, E., Kapsona, V. V., Basdagianni, Z., Chatziplis, D., Arsenos, G., Triantafyllidis, A. & Banos, G. 2021. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in mediterranean domestic sheep. Genet. Sel. Evol., 53, 90.
    Wei, C., Wang, H., Liu, G., Wu, M., Cao, J., Liu, Z., Liu, R., Zhao, F., Zhang, L., Lu, J., et al.,2015. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genom., 16, 194.
    Wu, D.-D., Yang, C.-P., Wang, M.-S., Dong, K.-Z., Yan, D.-W., Hao, Z.-Q., Fan, S.-Q., Chu, S.-Z., Shen, Q.-S., Jiang, L.-P., et al., 2019. Convergent genomic signatures of high-altitude adaptation among domestic mammals. Natl. Sci. Rev., 7, 952-963.
    Wu, G., Baumeister, R. & Heimbucher, T. 2023. Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold. Cells, 12.
    Xu, Y.-X., Wang, B., Jing, J.-N., Ma, R., Luo, Y.-H., Li, X., Yan, Z., Liu, Y.-J., Gao, L., Ren, Y.-L., et al., 2023. Whole-body adipose tissue multi-omic analyses in sheep reveal molecular mechanisms underlying local adaptation to extreme environments. Commun. Biol., 6, 159.
    Yang, J., Li, W.-R., Lv, F.-H., He, S.-G., Tian, S.-L., Peng, W.-F., Sun, Y.-W., Zhao, Y.-X., Tu, X.-L., Zhang, M., Xie, X.-L., et al., 2016. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol., 33, 2576-2592.
    Zhang, W., Jin, M., Lu, Z., Li, T., Wang, H., Yuan, Z. & Wei, C. 2023. Whole genome resequencing reveals selection signals related to wool color in sheep. Animals (Basel), 13.
    Zhang, Y., Xue, X., Liu, Y., Abied, A., Ding, Y., Zhao, S., Wang, W., Ma, L., Guo, J., Guan, W., et al.,2021. Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and poll dorset sheep. Sci. Rep., 11, 2466.
    Zhao, F., Deng, T., Shi, L., Wang, W., Zhang, Q., Du, L. & Wang, L. 2020. Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types. Animals (Basel), 10.
    Zhao, Y. X., Yang, J., Lv, F. H., Hu, X. J., Xie, X. L., Zhang, M., Li, W. R., Liu, M. J., Wang, Y. T., Li, J. Q., et al., 2017. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in east Asia. Mol. Biol. Evol., 34, 2380-2395.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return