8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

Nicotine-induced transcriptional changes and mitochondrial dysfunction in the ventral tegmental area revealed by single-nucleus transcriptomics

doi: 10.1016/j.jgg.2024.08.009
Funds:

This work was supported by the Major Project of Tobacco Biological Effects (552022AK0070, 110202102014).

  • Received Date: 2024-06-03
  • Accepted Date: 2024-08-26
  • Rev Recd Date: 2024-08-22
  • Available Online: 2025-06-06
  • Publish Date: 2024-09-05
  • Nicotine is widely recognized as the primary contributor to tobacco dependence. Previous studies have indicated that molecular and behavioral responses to nicotine are primarily mediated by ventral tegmental area (VTA) neurons, and accumulating evidence suggests that glia play prominent roles in nicotine addiction. However, VTA neurons and glia have yet to be characterized at the transcriptional level during the progression of nicotine self-administration. Here, a male mouse model of nicotine self-administration is established and the timing of three critical phases (pre-addiction, addicting, and post-addiction phase) is characterized. Single-nucleus RNA sequencing in the VTA at each phase is performed to comprehensively classify specific cell subtypes. Adaptive changes occurred during the addicting and post-addiction phases, with the addicting phase displaying highly dynamic neuroplasticity that profoundly impacts the transcription in each cell subtype. Furthermore, significant transcriptional changes in energy metabolism-related genes are observed, accompanied by notable structural alterations in neuronal mitochondria during the progression of nicotine self-administration. The results provide insights into mechanisms underlying the progression of nicotine addiction, serving as an important resource for identifying potential molecular targets for nicotine cessation.
  • loading
  • Adeluyi, A., Guerin, L., Fisher, M.L., Galloway, A., Cole, R.D., Chan, S.S.L., Wyatt, M.D., Davis, S.W., Freeman, L.R., Ortinski, P.I., Turner, J.R., 2019. Microglia morphology and proinflammatory signaling in the nucleus accumbens during nicotine withdrawal. Sci. Adv. 5, eaax7031.
    Anderson, P., Hughes, J.R., 2000. Policy interventions to reduce the harm from smoking. Addiction. 95, 9-11.
    Aryal, S.P., Fu, X., Sandin, J.N., Neupane, K.R., Lakes, J.E., Grady, M.E., Richards, C.I., 2021. Nicotine induces morphological and functional changes in astrocytes via nicotinic receptor activity. Glia. 69, 2037-2053.
    Baralle, F.E., Giudice, J., 2017. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 18, 437-451.
    Bariselli, S., Glangetas, C., Tzanoulinou, S., Bellone, C., 2016. Ventral tegmental area subcircuits process rewarding and aversive experiences. J. Neurochem. 139, 1071-1080.
    Beaglehole, R., Bates, C., Youdan, B., Bonita, R., 2019. Nicotine without smoke: fighting the tobacco epidemic with harm reduction. Lancet. 394, 718-720.
    Benowitz, N.L., 2010. Nicotine addiction. New Engl. J. Med. 362, 2295-2303.
    Boureau, Y.L., Dayan, P., 2011. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology. 36, 74-97.
    Brooks, A.C., Henderson, B.J., 2021. Systematic review of nicotine exposure's effects on neural stem and progenitor cells. Brain Sci. 11, 172.
    Cheng, A., Hou, Y., Mattson, M.P., 2010. Mitochondria and neuroplasticity. ASN Neuro. 2, e00045.
    Csordas, G., Weaver, D., Hajnoczky, G., 2018. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 28, 523-540.
    D'Acunzo, P., Ungania, J.M., Kim, Y., Barreto, B.R., DeRosa, S., Pawlik, M., Canals-Baker, S., Erdjument-Bromage, H., Hashim, A., Goulbourne, C.N., Neubert, T.A., Saito, M., Sershen, H., Levy, E., 2023. Cocaine perturbs mitovesicle biology in the brain. J. Extracell. Vesicles. 12, e12301.
    De Biase, L.M., Schuebel, K.E., Fusfeld, Z.H., Jair, K., Hawes, I.A., Cimbro, R., Zhang, H.-Y., Liu, Q.-R., Shen, H., Xi, Z.-X., Goldman, D., Bonci, A., 2017. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron. 95, 341-356.e346.
    de Jong, J.W., Fraser, K.M., Lammel, S., 2022. Mesoaccumbal dopamine heterogeneity: what do dopamine firing and release have to do with it? Annu. Rev. Neurosci. 45, 109-129.
    Demarque, M., Spitzer, N.C., 2020. Neurotransmitter phenotype plasticity: from calcium signaling to functional consequences, in: Rubenstein, J., Rakic, P., Chen, B., Kwan, K.Y., Cline, H.T., Cardin, J. (Eds.), Synapse Development and Maturation. Academic Press, pp. 383-405.
    Ding, Y.-Q., Marklund, U., Yuan, W., Yin, J., Wegman, L., Ericson, J., Deneris, E., Johnson, R.L., Chen, Z.-F., 2003. Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6, 933-938.
    Do Carmo, S., Jacomy, H., Talbot, P.J., Rassart, E., 2008. Neuroprotective effect of apolipoprotein D against human coronavirus OC43-induced encephalitis in mice. J. Neurosci. 28, 10330-10338.
    Donovan, L.J., Spencer, W.C., Kitt, M.M., Eastman, B.A., Lobur, K.J., Jiao, K., Silver, J., Deneris, E.S., 2019. Lmx1b is required at multiple stages to build expansive serotonergic axon architectures. Elife. 8, e48788.
    Doucet-Beaupre, H., Ang, S.-L., Levesque, M., 2015. Cell fate determination, neuronal maintenance and disease state: the emerging role of transcription factors Lmx1a and Lmx1b. FEBS Lett. 589, 3727-3738.
    Ernst, J., Bar-Joseph, Z., 2006. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinf. 7, 191.
    Fan, L., Chen, H., Liu, Y., Hou, H., Hu, Q., 2023. ERK signaling is required for nicotine-induced conditional place preference by regulating neuroplasticity genes expression in male mice. Pharmacol. Biochem. Behav. 222, 173510.
    Fletcher, P.J., Le, A.D., Higgins, G.A., 2008. Serotonin receptors as potential targets for modulation of nicotine use and dependence. Prog. Brain Res. 172, 361-383.
    Fowler, C.D., Kenny, P.J., 2011. Intravenous nicotine self-administration and cue-induced reinstatement in mice: effects of nicotine dose, rate of drug infusion and prior instrumental training. Neuropharmacology. 61, 687-698.
    Gergalova, G., Lykhmus, O., Komisarenko, S., Skok, M., 2014. α7 nicotinic acetylcholine receptors control cytochrome c release from isolated mitochondria through kinase-mediated pathways. Int. J. Biochem. Cell Biol. 49, 26-31.
    Godoy, J.A., Valdivieso, A.G., Inestrosa, N.C., 2018. Nicotine modulates mitochondrial dynamics in hippocampal neurons. Mol. Neurobiol. 55, 8965-8977.
    Grieder, T.E., Besson, M., Maal-Bared, G., Pons, S., Maskos, U., van Der Kooy, D., 2019. β2* nAChRs on VTA dopamine and GABA neurons separately mediate nicotine aversion and reward. Proc. Natl. Acad. Sci. U.S.A. 116, 25968-25973.
    Hebert-Chatelain, E., Marsicano, G., Desprez, T., 2017. Cannabinoids and mitochondria, in: Melis, M. (Ed.) Endocannabinoids and Lipid Mediators in Brain Functions. Springer International Publishing, Cham, pp. 211-235.
    Hu, J., Qian, H., Xue, Y., Fu, X.-D., 2018. PTB/nPTB: master regulators of neuronal fate in mammals. Biophys. Rep. 4, 204-214.
    Kadkhodaei, B., Ito, T., Joodmardi, E., Mattsson, B., Rouillard, C., Carta, M., Muramatsu, S.-I., Sumi-Ichinose, C., Nomura, T., Metzger, D., 2009. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J. Neurosci. 29, 15923-15932.
    Kalashnyk, O.M., Gergalova, G.L., Komisarenko, S.V., Skok, M.V., 2012. Intracellular localization of nicotinic acetylcholine receptors in human cell lines. Life Sci. 91, 1033-1037.
    Katti, P., Love-Rutledge, S., Murray, S.A., Hinton Jr, A., 2023. The role of mitochondrial endoplasmic reticulum contact sites in human health and disease. Front. Mol. Biosci. 10, 1223354.
    Kibret, B.G., Ishiguro, H., Horiuchi, Y., Onaivi, E.S., 2022. New insights and potential therapeutic targeting of CB2 cannabinoid receptors in CNS disorders. Int. J. Mol. Sci. 23, 975.
    Kumar, M., Adeluyi, A., Anderson, E.L., Turner, J.R., 2020. Glial cells as therapeutic targets for smoking cessation. Neuropharmacology. 175, 108157.
    Lai, J.I., Porcu, A., Romoli, B., Keisler, M., Manfredsson, F.P., Powell, S.B., Dulcis, D., 2023. Nicotine-mediated recruitment of GABAergic neurons to a dopaminergic phenotype attenuates motor deficits in an alpha-synuclein Parkinson's model. Int. J. Mol. Sci. 24, 4204.
    Lammel, S., Lim, B.K., Malenka, R.C., 2014. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology. 76 Pt B, 351-359.
    Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 9, 559.
    Le Foll, B., Piper, M.E., Fowler, C.D., Tonstad, S., Bierut, L., Lu, L., Jha, P., Hall, W.D., 2022. Tobacco and nicotine use. Nat. Rev. Dis. Primers. 8, 19.
    Liu, C., Tose, A.J., Verharen, J.P.H., Zhu, Y., Tang, L.W., de Jong, J.W., Du, J.X., Beier, K.T., Lammel, S., 2022. An inhibitory brainstem input to dopamine neurons encodes nicotine aversion. Neuron. 110, 3018-3035.
    Liu, Q.-R., Canseco-Alba, A., Zhang, H.-Y., Tagliaferro, P., Chung, M., Dennis, E., Sanabria, B., Schanz, N., Escosteguy-Neto, J.C., Ishiguro, H., 2017. Cannabinoid type 2 receptors in dopamine neurons inhibits psychomotor behaviors, alters anxiety, depression and alcohol preference. Sci. Rep. 7, 1-17.
    Lykhmus, O., Voytenko, L.P., Lips, K.S., Bergen, I., Krasteva-Christ, G., Vetter, D.E., Kummer, W., Skok, M., 2017. Nicotinic acetylcholine receptor α9 and α10 subunits are expressed in the brain of mice. Front. Cell. Neurosci. 11, 282.
    Malinska, D., Wieckowski, M.R., Michalska, B., Drabik, K., Prill, M., Patalas-Krawczyk, P., Walczak, J., Szymanski, J., Mathis, C., Van der Toorn, M., Luettich, K., Hoeng, J., Peitsch, M.C., Duszynski, J., Szczepanowska, J., 2019. Mitochondria as a possible target for nicotine action. J. Bioenerg. Biomembr. 51, 259-276.
    Matta, S.G., Balfour, D.J., Benowitz, N.L., Boyd, R.T., Buccafusco, J.J., Caggiula, A.R., Craig, C.R., Collins, A.C., Damaj, M.I., Donny, E.C., Gardiner, P.S., Grady, S.R., Heberlein, U., Leonard, S.S., Levin, E.D., Lukas, R.J., Markou, A., Marks, M.J., McCallum, S.E., Parameswaran, N., Perkins, K.A., Picciotto, M.R., Quik, M., Rose, J.E., Rothenfluh, A., Schafer, W.R., Stolerman, I.P., Tyndale, R.F., Wehner, J.M., Zirger, J.M., 2007. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology. 190, 269-319.
    Maya-Lopez, M., Zazueta, C., Retana-Marquez, S., Ali, S.F., Karasu, C., Onaivi, E.S., Aschner, M., Santamaria, A., 2020. The endocannabinoid system in the central nervous system: emphasis on the role of the mitochondrial cannabinoid receptor 1 (mtCB1R), in: Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (Eds.), NeuroPsychopharmacotherapy. Springer International Publishing, Cham, pp. 1-23.
    Mayere, C., Regard, V., Perea-Gomez, A., Bunce, C., Neirijnck, Y., Djari, C., Bellido-Carreras, N., Sararols, P., Reeves, R., Greenaway, S., 2022. Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. Sci. Adv. 8, eabm0972.
    McGinnis, C.S., Murrow, L.M., Gartner, Z.J., 2019. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329-337.
    Morales, M., Margolis, E.B., 2017. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73-85.
    Nagai, Y., Takayama, K., Nishitani, N., Andoh, C., Koda, M., Shirakawa, H., Nakagawa, T., Nagayasu, K., Yamanaka, A., Kaneko, S., 2020. The role of dorsal raphe serotonin neurons in the balance between reward and aversion. Int. J. Mol. Sci. 21, 2160.
    Najyb, O., Do Carmo, S., Alikashani, A., Rassart, E., 2017. Apolipoprotein D overexpression protects against kainate-induced neurotoxicity in mice. Mol. Neurobiol. 54, 3948-3963.
    Olausson, P., Engel, J.A., Soderpalm, B., 2002. Involvement of serotonin in nicotine dependence: processes relevant to positive and negative regulation of drug intake. Pharmacol. Biochem. Behav. 71, 757-771.
    Perez, R.K., Gordon, M.G., Subramaniam, M., Kim, M.C., Hartoularos, G.C., Targ, S., Sun, Y., Ogorodnikov, A., Bueno, R., Lu, A., Thompson, M., Rappoport, N., Dahl, A., Lanata, C.M., Matloubian, M., Maliskova, L., Kwek, S.S., Li, T., Slyper, M., Waldman, J., Dionne, D., Rozenblatt-Rosen, O., Fong, L., Dall'Era, M., Balliu, B., Regev, A., Yazdany, J., Criswell, L.A., Zaitlen, N., Ye, C.J., 2022. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970.
    Phillips, R.A., Tuscher, J.J., Black, S.L., Andraka, E., Fitzgerald, N.D., Ianov, L., Day, J.J., 2022. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Rep. 39, 110616.
    Pierucci, M., Chambers, S., Partridge, L., De Deurwaerdere, P., Di Giovanni, G., 2014. Role of central serotonin receptors in nicotine addiction, in: Lester, R.A.J. (Ed.) Nicotinic Receptors. Springer New York, New York, NY, pp. 279-305.
    Pogun, S., Yararbas, G., Nesil, T., Kanit, L., 2017. Sex differences in nicotine preference. J. Neurosci. Res. 95, 148-162.
    Qian, Z., Qin, J., Lai, Y., Zhang, C., Zhang, X., 2023. Large-scale integration of single-cell RNA-seq data reveals astrocyte diversity and transcriptomic modules across six central nervous system disorders. Biomolecules. 13, 692.
    Quiroz, J.A., Gray, N.A., Kato, T., Manji, H.K., 2008. Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology. 33, 2551-2565.
    Rademacher, L., Prinz, S., Winz, O., Henkel, K., Dietrich, C.A., Schmaljohann, J., Mohammadkhani Shali, S., Schabram, I., Stoppe, C., Cumming, P., Hilgers, R.D., Kumakura, Y., Coburn, M., Mottaghy, F.M., Grunder, G., Vernaleken, I., 2016. Effects of smoking cessation on presynaptic dopamine function of addicted male smokers. Biol. Psychiatry. 80, 198-206.
    Raefsky, S.M., Mattson, M.P., 2017. Adaptive responses of neuronal mitochondria to bioenergetic challenges: roles in neuroplasticity and disease resistance. Free Radic. Biol. Med. 102, 203-216.
    Rasmussen, K., Czachura, J.F., 1997. Nicotine withdrawal leads to increased sensitivity of serotonergic neurons to the 5-HT1A agonist 8-OH-DPAT. Psychopharmacology. 133, 343-346.
    Reitsma, M.B., Flor, L.S., Mullany, E.C., Gupta, V., Hay, S.I., Gakidou, E., 2021. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and initiation among young people in 204 countries and territories, 1990-2019. Lancet Public Health. 6, e472-e481.
    Ribeiro, E.B., Bettiker, R.L., Bogdanov, M., Wurtman, R.J., 1993. Effects of systemic nicotine on serotonin release in rat brain. Brain Res. 621, 311-318.
    Romoli, B., Lozada, A.F., Sandoval, I.M., Manfredsson, F.P., Hnasko, T.S., Berg, D.K., Dulcis, D., 2019. Neonatal nicotine exposure primes midbrain neurons to a dopaminergic phenotype and increases adult drug consumption. Biol. Psychiatry. 86, 344-355.
    Russell, M.A., Wilson, C., Patel, U.A., Feyerabend, C., Cole, P.V., 1975. Plasma nicotine levels after smoking cigarettes with high, medium, and low nicotine yields. Br. Med. J. 2, 414-416.
    Salter, M.W., Stevens, B., 2017. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018-1027.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.
    Shi, W., Zhang, Y., Zhao, G., Wang, S., Zhang, G., Ma, C., Cong, B., Li, Y., 2019. Dysregulation of dopaminergic regulatory factors TH, Nurr1, and Pitx3 in the ventral tegmental area associated with neuronal injury induced by chronic morphine dependence. Int. J. Mol. Sci. 20, 250.
    Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M., Smibert, P., Satija, R., 2019. Comprehensive integration of single-cell data. Cell. 177, 1888-1902.e1821.
    Swalve, N., Smethells, J.R., Carroll, M.E., 2016. Sex differences in the acquisition and maintenance of cocaine and nicotine self-administration in rats. Psychopharmacology. 233, 1005-1013.
    Teng, Y., 2023. Remodeling of mitochondria in cancer and other diseases. Int. J. Mol. Sci. 24, 7693.
    Thornton, C., Grad, E., Yaka, R., 2021. The role of mitochondria in cocaine addiction. Biochem. J. 478, 749-764.
    Tiklova, K., Bjorklund, A.K., Lahti, L., Fiorenzano, A., Nolbrant, S., Gillberg, L., Volakakis, N., Yokota, C., Hilscher, M.M., Hauling, T., 2019. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun. 10, 581.
    Tiwari, R.K., Sharma, V., Pandey, R.K., Shukla, S.S., 2020. Nicotine addiction: neurobiology and mechanism. J. Pharmacopuncture. 23, 1-7.
    Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, K.J., Mikkelsen, T.S., Rinn, J.L., 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381-386.
    Vazquez-Sanroman, D.B., Monje, R.D., Bardo, M.T., 2017. Nicotine self-administration remodels perineuronal nets in ventral tegmental area and orbitofrontal cortex in adult male rats. Addict. Biol. 22, 1743-1755.
    Xie, Y.-X., Bezard, E., Zhao, B.-L., 2005. Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria. J. Biol. Chem. 280, 32405-32412.
    Xin, W., Schuebel, K.E., Jair, K.-W., Cimbro, R., De Biase, L.M., Goldman, D., Bonci, A., 2019. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology. 44, 344-355.
    Xue, S., Behnood-Rod, A., Wilson, R., Wilks, I., Tan, S., Bruijnzeel, A.W., 2020. Rewarding effects of nicotine in adolescent and adult male and female rats as measured using intracranial self-stimulation. Nicotine Tob. Res. 22, 172-179.
    Yang, L., Shen, J., Liu, C., Kuang, Z., Tang, Y., Qian, Z., Guan, M., Yang, Y., Zhan, Y., Li, N., 2023. Nicotine rebalances NAD+ homeostasis and improves aging-related symptoms in male mice by enhancing NAMPT activity. Nat. Commun. 14, 900.
    Yuan, L., Dou, Y.-N., Sun, Y.-G., 2019. Topography of reward and aversion encoding in the mesolimbic dopaminergic system. J. Neurosci. 39, 6472-6481.
    Zoli, M., Picciotto, M.R., 2012. Nicotinic regulation of energy homeostasis. Nicotine Tob. Res. 14, 1270-1290.
    Masuda, T., Sankowski, R., Staszewski, O., Bottcher, C., Amann, L., Sagar, Scheiwe, C., Nessler, S., Kunz, P., van Loo, G., Coenen, V.A., Reinacher, P.C., Michel, A., Sure, U., Gold, R., Grun, D., Priller, J., Stadelmann, C., Prinz, M., 2019. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 566, 388-392.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return