8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

A human-specific cytotoxic neopeptide generated by the deafness gene Cingulin

doi: 10.1016/j.jgg.2024.07.017
Funds:

This work is supported by the National Natural Science Foundation of China (82171136 and 92368110 to G.W., 82201291 to G.-J.Z., 82171145 to X.Q., 81870721 to J.C., and 81970884 and 82192862 to X.G.), Natural Science Foundation of Jiangsu Province (BK20220189 to G.-J.Z. and BK20220188 to Q.L.), Special Foundation for Health Science and Technology Development of Nanjing (YKK21109 to G.-J.Z.), and the Clinical Research Foundation of Drum Tower Hospital affiliated to Nanjing University Medical School (2021-LCYJ-PY-04 to G.-J.Z.).

  • Received Date: 2024-05-23
  • Accepted Date: 2024-07-26
  • Rev Recd Date: 2024-07-22
  • Available Online: 2025-06-06
  • Publish Date: 2024-08-05
  • Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death. Expression of the mutant CGN in the inner ear results in severe hair cell death and hearing loss in mice, resembling the auditory phenotype in human patients. Interestingly, a human-specific residue (V1112) in the neopeptide generated by the frameshift mutation is critical for the aggregation and cytotoxicity of the mutant human CGN. Moreover, the expression of heat shock factor 1 (HSF1) decreases the accumulation of insoluble mutant CGN aggregates and rescues cell death. In summary, these findings identify mutant-specific toxic polypeptides as a disease-causing mechanism of the deafness mutation in CGN, which can be targeted by the expression of the cell chaperone response regulator HSF1.
  • loading
  • Abe, S., Katagiri, T., Saito-Hisaminato, A., Usami, S.-i., Inoue, Y., Tsunoda, T., Nakamura, Y., 2003. Identification of CRYM as a candidate responsible for nonsyndromic deafness, through cDNA microarray analysis of human cochlear and vestibular tissues. Am. J. Hum. Genet. 72, 73-82.
    Bruijn, S.E.d., Smits, J.J., Liu, C., Lanting, C.P., Beynon, A.J., Blankevoort, J., Oostrik, J., Koole, W., Vrieze, E.d., Cremers, C.W.R.J., et al., 2020. A RIPOR2 in-frame deletion is a frequent and highly penetrant cause of adult-onset hearing loss. J. Med. Genet. 58, jmedgenet-2020-106863.
    Chen, H.-J., Mitchell, J.C., Novoselov, S., Miller, J., Nishimura, A.L., Scotter, E.L., Vance, C.A., Cheetham, M.E., Shaw, C.E., 2016. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis. Brain 139, 1417-1432.
    Chin, L.-S., Olzmann, James A., Li, L., 2010. Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem. Soc. Trans. 38, 144-149.
    Cho, H.-J., Park, H.-J., Trexler, M., Venselaar, H., Lee, K.-Y., Robertson, N.G., Baek, J.-I., Kang, B.S., Morton, C.C., Vriend, G., et al., 2012. A novel COCH mutation associated with autosomal dominant nonsyndromic hearing loss disrupts the structural stability of the vWFA2 domain. J. Mol. Med. 90, 1321-1331.
    Choi, H.J., Lee, H.J., Choi, J.Y., Jeon, I.H., Noh, B., Devkota, S., Lee, H.-W., Eo, S.K., Choi, J.Y., Lee, M.G., et al., 2020. DNAJC14 ameliorates inner ear degeneration in the DFNB4 mouse model. Mol. Ther. Methods Clin. Dev. 17, 188-197.
    Conchillo-Sole, O., de Groot, N.S., Aviles, F.X., Vendrell, J., Daura, X., Ventura, S., 2007. AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinf. 8, 65.
    Freeman, S., Mateo Sanchez, S., Pouyo, R., Van Lerberghe, P.B., Hanon, K., Thelen, N., Thiry, M., Morelli, G., Van Hees, L., Laguesse, S., et al., 2019. Proteostasis is essential during cochlear development for neuron survival and hair cell polarity. EMBO Rep. 20, e47097.
    Gong, T.W., Fairfield, D.A., Fullarton, L., Dolan, D.F., Altschuler, R.A., Kohrman, D.C., Lomax, M.I., 2012. Induction of heat shock proteins by hyperthermia and noise overstimulation in hsf1-/- mice. J. Assoc. Res. Otolaryngol. 13, 29-37.
    Hartl, F.U., 2017. Protein misfolding diseases. Annu. Rev. Biochem. 86, 21-26.
    Hetz, C., Chevet, E., Oakes, S.A., 2015. Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17, 829-838.
    Homma, K., 2022. The pathological mechanisms of hearing loss caused by KCNQ1 and KCNQ4 variants. Biomedicines 10.
    Hope, A.D., De Silva, R., Fischer, D.F., Hol, E.M., Van Leeuwen, F.W., Lees, A.J., 2004. Alzheimer's associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. J. Neurochem. 86, 394-404.
    Jongkamonwiwat, N., Ramirez, M.A., Edassery, S., Wong, A.C.Y., Yu, J., Abbott, T., Pak, K., Ryan, A.F., Savas, J.N., 2020. Noise exposures causing hearing loss generate proteotoxic stress and activate the proteostasis network. Cell Rep. 33, 108431.
    Kawaguchi, Y., Kovacs, J.J., McLaurin, A., Vance, J.M., Ito, A., Yao, T.-P., 2003. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727-738.
    Koh, Y.I., Oh, K.S., Kim, J.A., Noh, B., Choi, H.J., Joo, S.Y., Rim, J.H., Kim, H.-Y., Kim, D.Y., Yu, S., et al., 2022. OSBPL2 mutations impair autophagy and lead to hearing loss, potentially remedied by rapamycin. Autophagy 18, 2593-2614.
    Kopito, R.R., 2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524-530.
    Labbadia, J., Morimoto, R.I., 2015. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435-464.
    Laer, L.V., Huizing, E.H., Verstreken, M., Zuijlen, D.v., Wauters, J.G., Bossuyt, P.J., Heyning, P.V.d., McGuirt, W.T., Smith, R.J., Willems, P.J., et al., 1998. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat. Genet. 20, 194-197.
    Lee, Y.Y., Gil, E.S., Jeong, I.H., Kim, H., Jang, J.H., Choung, Y.-H., 2021. Heat Shock Factor 1 prevents age-related hearing loss by decreasing endoplasmic reticulum stress. Cells 10, 2454.
    Lindberg, I., Shorter, J., Wiseman, R.L., Chiti, F., Dickey, C.A., McLean, P.J., 2015. Chaperones in neurodegeneration. J. Neurosci. 35, 13853-13859.
    Lv, J., Wang, H., Cheng, X., Chen, Y., Wang, D., Zhang, L., Cao, Q., Tang, H., Hu, S., Gao, K., et al., 2024. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: a single-arm trial. Lancet 403, 2317-2325.
    Menzies, F.M., Ravikumar, B., Rubinsztein, D.C., 2014. Protective roles for induction of autophagy in multiple proteinopathies. Autophagy 2, 224-225.
    Modamio-Hoeybjoer, S., Mencia, A., Goodyear, R., del Castillo, I., Richardson, G., Moreno, F., Moreno-Pelayo, M.A., 2007. A mutation in CCDC50, a gene encoding an effector of epidermal growth factor-mediated cell signaling, causes progressive hearing loss. Am. J. Hum. Genet. 80, 1076-1089.
    Morimoto, R.I., 2012. The heat shock response systems biology of proteotoxic stress in aging and disease. Cold Spring Harb. Symp. Quant. Biol. 76, 91-99.
    Moriya, S., Komatsu, S., Yamasaki, K., Kawai, Y., Kokuba, H., Hirota, A., Che, X.-F., Inazu, M., Gotoh, A., Hiramoto, M., et al., 2015. Targeting the integrated networks of aggresome formation, proteasome, and autophagy potentiates ER stress-mediated cell death in multiple myeloma cells. Int. J. Oncol. 46, 474-486.
    Nakai, A., Suzuki, M., Tanabe, M., 2000. Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1. EMBO J. 19, 1545-1554.
    O'Leary, T.P., Shin, S., Fertan, E., Dingle, R.N., Almuklass, A., Gunn, R.K., Yu, Z., Wang, J., Brown, R.E., 2017. Reduced acoustic startle response and peripheral hearing loss in the 5xFAD mouse model of Alzheimer's disease. Gene Brain Behav. 16, 554-563.
    Oh, K.S., Walls, D., Joo, S.Y., Kim, J.A., Yoo, J.E., Koh, Y.I., Kim, D.H., Rim, J.H., Choi, H.J., Kim, H.-Y., et al., 2021. COCH-related autosomal dominant nonsyndromic hearing loss: a phenotype-genotype study. Hum. Genet. 141, 889-901.
    Oh, K.S., Roh, J.W., Joo, S.Y., Ryu, K., Kim, J.A., Kim, S.J., Jang, S.H., Koh, Y.I., Kim, D.H., Kim, H.-Y., et al., 2023. Overlooked KCNQ4 variants augment the risk of hearing loss. Exp. Mol. Med. 55, 844-859.
    Olzmann, J.A., Li, L., Chudaev, M.V., Chen, J., Perez, F.A., Palmiter, R.D., Chin, L.-S., 2007. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell Biol. 178, 1025-1038.
    Omata, Y., Tharasegaran, S., Lim, Y.-M., Yamasaki, Y., Ishigaki, Y., Tatsuno, T., Maruyama, M., Tsuda, L., 2016. Expression of amyloid-β in mouse cochlear hair cells causes an early-onset auditory defect in high-frequency sound perception. Aging 8, 427-439.
    Paschoud, S., Citi, S., 2009. Inducible overexpression of cingulin in stably transfected MDCK cells does not affect tight junction organization and gene expression. Mol. Membr. Biol. 25, 1-13.
    Paulson, H.L., 1999. Protein fate in neurodegenerative pProteinopathies: polyglutamine diseases join the (mis)fold. Am. J. Hum. Genet. 64, 339-345.
    Qi, J., Tan, F., Zhang, L., Lu, L., Zhang, S., Zhai, Y., Lu, Y., Qian, X., Dong, W., Zhou, Y., et al., 2024a. AAV-Mediated gene therapy restores hearing in patients with DFNB9 deafness. Adv. Sci. 11, e2306788.
    Qi, J., Zhang, L., Tan, F., Zhang, Y., Zhou, Y., Zhang, Z., Wang, H., Yu, C., Jiang, L., Liu, J., et al., 2024b. Preclinical efficacy and safety evaluation of AAV-OTOF in DFNB9 mouse model and nonhuman primate. Adv. Sci. 11, e2306201.
    Sun, G., Zheng, Y., Fu, X., Zhang, W., Ren, J., Ma, S., Sun, S., He, X., Wang, Q., Ji, Z., et al., 2023. Single-cell transcriptomic atlas of mouse cochlear aging. Protein Cell 14, 180-201.
    Sun, Q., Zhang, L., Chen, T., Li, N., Tan, F., Gu, X., Zhou, Y., Zhang, Z., Lu, Y., Lu, J., et al., 2024. AAV-mediated Gpm6b expression supports hair cell reprogramming. Cell Prolif. 57, e13620.
    Tan, F., Chu, C., Qi, J., Li, W., You, D., Li, K., Chen, X., Zhao, W., Cheng, C., Liu, X., et al., 2019. AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat. Commun. 10, 3733.
    Tang, Z., Su, K.-H., Xu, M., Dai, C., 2020. HSF1 physically neutralizes amyloid oligomers to empower overgrowth and bestow neuroprotection. Sci. Adv. 6, eabc6871.
    Tedesco, B., Vendredy, L., Adriaenssens, E., Cozzi, M., Asselbergh, B., Crippa, V., Cristofani, R., Rusmini, P., Ferrari, V., Casarotto, E., et al., 2023. HSPB8 frameshift mutant aggregates weaken chaperone-assisted selective autophagy in neuromyopathies. Autophagy 19, 2217-2239.
    Van Laer, L., 2004. DFNA5: hearing impairment exon instead of hearing impairment gene? J. Med. Genet. 41, 401-406.
    Verhoef, L.G.G.C., Lindsten, K., Masucci, M.G., Dantuma, N.P., 2002. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689-2700.
    Wang, H., Chen, Y., Lv, J., Cheng, X., Cao, Q., Wang, D., Zhang, L., Zhu, B., Shen, M., Xu, C., et al., 2024. Bilateral gene therapy in children with autosomal recessive deafness 9: single-arm trial results. Nat. Med. 30, 1898-1904.
    Wang, P., Wander, C.M., Yuan, C.-X., Bereman, M.S., Cohen, T.J., 2017. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat. Commun. 8, 82.
    Wang, W., Sun, Y., Chen, S., Zhou, X., Wu, X., Kong, W., Kong, W., 2015. Impaired unfolded protein response in the degeneration of cochlea cells in a mouse model of age-related hearing loss. Exp. Gerontol. 70, 61-70.
    Watabe, M., Nakaki, T., 2014. CK2 as anti-stress factor. Commun. Integr. Biol. 5, 278-280.
    Yano, T., Matsui, T., Tamura, A., Uji, M., Tsukita, S., 2013. The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J. Cell Biol. 203, 605-614.
    Yoon, J.S., Park, H.J., Yoo, S.Y., Namkung, W., Jo, M.J., Koo, S.K., Park, H.Y., Lee, W.S., Kim, K.H., Lee, M.G., 2008. Heterogeneity in the processing defect of SLC26A4 mutants. J. Med. Genet. 45, 411-419.
    Zhang, L., Fang, Y., Tan, F., Guo, F., Zhang, Z., Li, N., Sun, Q., Qi, J., Chai, R., 2023. AAV-Net1 facilitates the trans-differentiation of supporting cells into hair cells in the murine cochlea. Cell. Mol. Life Sci. 80, 86.
    Zhang, L., Chen, X., Wang, X., Zhou, Y., Fang, Y., Gu, X., Zhang, Z., Sun, Q., Li, N., Xu, L., et al., 2024. AAV-mediated gene cocktails enhance supporting cell reprogramming and hair cell regeneration. Adv. Sci., e2304551.
    Zhao, Z., Cao, L., Reece, E.A., 2017. Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects. Proc. Natl. Acad. Sci. U.S.A. 114, 4489-4494.
    Zhu, G.J., Huang, Y., Zhang, L., Yan, K., Qiu, C., He, Y., Liu, Q., Zhu, C., Morin, M., Moreno-Pelayo, M.A., et al., 2023. Cingulin regulates hair cell cuticular plate morphology and is required for hearing in human and mouse. EMBO Mol. Med. 15, e17611.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return