Abou-Elwafa, S.F.,Shehzad, T., 2018. Genetic identification and expression profiling of drought responsive genes in sorghum. Environ. Exp. Bot. 155, 12-20.
|
Addo-Quaye, C., Tuinstra, M., Carraro, N., Weil, C.,Dilkes, B.P., 2018. Whole-genome sequence accuracy is improved by replication in a population of mutagenized sorghum. G3 (Bethesda). 8, 1079-1094.
|
Anami, S.E., Zhang, L.M., Xia, Y., Zhang, Y.M., Liu, Z.Q.,Jing, H.C., 2015. Sweet sorghum ideotypes: Genetic improvement of stress tolerance. Food and Energy Security. 4, 3-24.
|
Ananda, G.K.S., Myrans, H., Norton, S.L., Gleadow, R., Furtado, A.,Henry, R.J., 2020. Wild sorghum as a promising resource for crop improvement. Front Plant Sci. 11, 1108.
|
Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., et al., 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 40, W597-603.
|
Bao, J., Zhang, H., Wang, F., Li, L., Zhu, X., Xu, J., Wang, Y., Liu, Z., Zhai, G.,Xu, H., 2024. Telomere-to-telomere genome assemblies of two Chinese Baijiu-brewing sorghum landraces. Plant Commun. 5, 100933.
|
Baye, W., Xie, Q.,Xie, P., 2022. Genetic architecture of grain yield-related traits in sorghum and maize. Int. J. Mol. Sci. 23, 2405.
|
Boatwright, J.L., Sapkota, S., Jin, H., Schnable, J.C., Brenton, Z., Boyles, R.,Kresovich, S., 2022. Sorghum association panel whole-genome sequencing establishes cornerstone resource for dissecting genomic diversity. Plant J. 111, 888-904.
|
Caniato, F.F., Hamblin, M.T., Guimaraes, C.T., Zhang, Z., Schaffert, R.E., Kochian, L.V.,Magalhaes, J.V., 2014. Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus, AltSB. PLoS ONE 9, e87438.
|
Casto, A.L., Mattison, A.J., Olson, S.N., Thakran, M., Rooney, W.L.,Mullet, J.E., 2019. Maturity2, a novel regulator of flowering time in Sorghum bicolor, increases expression of SbPRR37 and SbCO in long days delaying flowering. PLoS ONE 14, e0212154.
|
Che, P., Wu, E., Simon, M.K., Anand, A., Lowe, K., Gao, H., Sigmund, A.L., Yang, M., Albertsen, M.C., Gordon-Kamm, W., et al., 2022. Wuschel2 enables highly efficient CRISPR/CAS -targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun. Biol. 5, 344.
|
Chen, J., Xin, Z.,Laza, H., 2019. Registration of BTx623dw5, a new sorghum dwarf mutant. J. Plant Regist. 13, 254-257.
|
Chen, J., Zhu, M., Liu, R., Zhang, M., Lv, Y., Liu, Y., Xiao, X., Yuan, J.,Cai, H., 2020. BIOMASS YIELD 1 regulates sorghum biomass and grain yield via the shikimate pathway. J. Exp. Bot. 71, 5506-5520.
|
Choi, S.C., Chung, Y.S., Lee, Y.G., Kang, Y., Park, Y.J., Park, S.U.,Kim, C.J.P., 2020. Prediction of dhurrin metabolism by transcriptome and metabolome analyses in Sorghum. Plants (Basel) 9, 1390.
|
Clack, T., Shokry, A., Moffet, M., Liu, P., Faul, M.,Sharrock, R.A., 2009. Obligate heterodimerization of Arabidopsis phytochromes C and E and interaction with the PIF3 basic helix-loop-helix transcription factor. Plant cell 21, 786-799.
|
Clemente, H.S., Pont-Lezica, R.,Jamet, E., 2009. Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: Plant cell wall proteomics as a test case. Bioinform. Biol. Insights. 3, 15-28.
|
Cooper, E.A., Brenton, Z.W., Flinn, B.S., Jenkins, J., Shu, S., Flowers, D., Luo, F., Wang, Y., Xia, P., Barry, K., et al., 2019. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: Implications for the genetics of sugar metabolism. BMC genomics 20, 420.
|
Cuevas, H.E., Zhou, C., Tang, H., Khadke, P.P., Das, S., Lin, Y.R., Ge, Z., Clemente, T., Upadhyaya, H.D., Hash, C.T., et al., 2016. The evolution of photoperiod-insensitive flowering in sorghum, a genomic model for panicoid grasses. Mol. Biol. Evol. 33, 2417-2428.
|
Dampanaboina, L., Jiao, Y., Chen, J., Gladman, N., Chopra, R., Burow, G., Hayes, C., Christensen, S.A., Burke, J., Ware, D., et al., 2019. Sorghum MSD3 encodes an omega-3 fatty acid desaturase that increases grain number by reducing jasmonic acid levels. Int. J. Mol. Sci. 20. 5359.
|
Deschamps, S., Zhang, Y., Llaca, V., Ye, L., Sanyal, A., King, M., May, G.,Lin, H., 2018. A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat. Commun. 9, 4844.
|
Diatta-Holgate, E., Bergsma, B.,Tuinstra, M.R., 2024. Mutations in the dwarf3 gene confer height stability in sorghum. Plant Genome e20466.
|
Dong, Q., Schlueter, S.D.,Brendel, V., 2004. PlantGDB, plant genome database and analysis tools. Nucleic Acids Res. 32, D354-359.
|
Du, Q., Fang, Y., Jiang, J., Chen, M., Fu, X., Yang, Z., Luo, L., Wu, Q., Yang, Q.,Wang, L.J.B.g., 2022. Characterization of histone deacetylases and their roles in response to abiotic and PAMPs stresses in Sorghum bicolor. BMC Genomics 23, 28.
|
Du, Q., Qu, Z., Wang, L., Jiang, J., Fu, X., Fang, Y., Li, X.,Xie, X., 2021. Histone deacetylase SbHDT701 in Sorghum bicolor reveals functions in response to stress factors by enhancing acetylation. Pestic. Biochem. Physiol. 178, 104908.
|
Fu, J., McKinley, B., James, B., Chrisler, W., Markillie, L.M., Gaffrey, M.J., Mitchell, H.D., Riaz, M.R., Marcial, B.,Orr, G., 2024. Cell-type-specific transcriptomics uncovers spatial regulatory networks in bioenergy sorghum stems. Plant J. 118, 1668-1688.
|
Fujimoto, M., Sazuka, T., Oda, Y., Kawahigashi, H., Wu, J., Takanashi, H., Ohnishi, T., Yoneda, J.I., Ishimori, M., Kajiya-Kanegae, H., et al., 2018. Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Proc. Natl. Acad. Sci. U. S. A. 115, E8783-e8792.
|
Gao, J., Liang, Y., Li, J., Wang, S., Zhan, M., Zheng, M., Li, H.,Yang, Z., 2021. Identification of a bacterial-type ATP-binding cassette transporter implicated in aluminum tolerance in sweet sorghum (Sorghum bicolor L.). Plant Signal Behav. 16, 1916211.
|
Gao, J., Yan, S., Yu, H., Zhan, M., Guan, K., Wang, Y.,Yang, Z., 2019. Sweet sorghum (Sorghum bicolor L.) SbSTOP1 activates the transcription of a β-1,3-glucanase gene to reduce callose deposition under al toxicity: A novel pathway for al tolerance in plants. Biosci. Biotechnol. Biochem. 83, 446-455.
|
Ge, F., Xie, P., Wu, Y.,Xie, Q., 2023. Genetic architecture and molecular regulation of sorghum domestication. aBIOTECH 4, 57-71.
|
Gladman, N., Jiao, Y., Lee, Y.K., Zhang, L., Chopra, R., Regulski, M., Burow, G., Hayes, C., Christensen, S.A., Dampanaboina, L., et al., 2019. Fertility of pedicellate spikelets in sorghum is controlled by a jasmonic acid regulatory module. Int. J Mol. Sci. 20, 4951.
|
Gladman, N., Olson, A., Wei, S., Chougule, K., Lu, Z., Tello-Ruiz, M., Meijs, I., Van Buren, P., Jiao, Y., Wang, B., et al., 2022. SorghumBase: A web-based portal for sorghum genetic information and community advancement. Planta 255, 35.
|
Gnanasekaran, T., Karcher, D., Nielsen, A.Z., Martens, H.J., Ruf, S., Kroop, X., Olsen, C.E., Motawie, M.S., Pribil, M.,Moeller, B.L., 2016. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. J. Exp. Bot. 67, 2495-2506.
|
Goche, T., Shargie, N.G., Cummins, I., Brown, A.P., Chivasa, S.,Ngara, R., 2020. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci. Rep. 10, 11835.
|
Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., et al., 2012. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178-1186.
|
Grant, N.P., Toy, J.J., Funnell-Harris, D.L.,Sattler, S.E., 2023. Deleterious mutations predicted in the sorghum (Sorghum bicolor) Maturity (Ma) and Dwarf (Dw) genes from whole-genome resequencing. Sci. Rep. 13, 16638.
|
Guan, K., Yang, Z., Zhan, M., Zheng, M., You, J., Meng, X., Li, H.,Gao, J., 2023. Two sweet sorghum (Sorghum bicolor L.) WRKY transcription factors promote aluminum tolerance via the reduction in callose deposition. Int. J. Mol. Sci. 24.
|
Guillotin, B., Rahni, R., Passalacqua, M., Mohammed, M.A., Xu, X., Raju, S.K., Ramirez, C.O., Jackson, D., Groen, S.C.,Gillis, J., 2023. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617, 785-791.
|
Guo, W., Carroll, M.E., Singh, A., Swetnam, T.L., Merchant, N., Sarkar, S., Singh, A.K.,Ganapathysubramanian, B., 2021. UAS-based plant phenotyping for research and breeding applications. Plant Phenomics 2021, 9840192.
|
Guo, W., Zheng, B., Potgieter, A.B., Diot, J., Watanabe, K., Noshita, K., Jordan, D.R., Wang, X., Watson, J., Ninomiya, S., et al., 2018. Aerial imagery analysis - quantifying appearance and number of sorghum heads for applications in breeding and agronomy. Front. Plant Sci. 9, 1544.
|
Gupta, P., Elser, J., Hooks, E., D’Eustachio, P., Jaiswal, P., Naithani, S., 2024. Plant Reactome Knowledgebase: empowering plant pathway exploration and OMICS data analysis. Nucleic Acids Res 52 (D1), D1538–D1547.
|
Habyarimana, E.,Lopez-Cruz, M., 2019. Genomic selection for antioxidant production in a panel of Sorghum bicolor and S. bicolor x S. halepense lines. Genes (Basel) 10, 841.
|
Han, L., Chen, J., Mace, E.S., Liu, Y., Zhu, M., Yuyama, N., Jordan, D.R.,Cai, H., 2015. Fine mapping of qGW1, a major qtl for grain weight in sorghum. Theor. Appl. Genet. 128, 1813-1825.
|
Harig, L., Beinecke, F.A., Oltmanns, J., Muth, J., Muller, O., Ruping, B., Twyman, R.M., Fischer, R., Prufer, D.,Noll, G.A., 2012. Proteins from the flowering locus t-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J. 72, 908-921.
|
Hashimoto, S., Wake, T., Nakamura, H., Minamiyama, M., Araki-Nakamura, S., Ohmae-Shinohara, K., Koketsu, E., Okamura, S., Miura, K.,Kawaguchi, H., 2021. The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Sci. Rep. 11, 4532.
|
Hilley, J., Truong, S., Olson, S., Morishige, D.,Mullet, J., 2016. Identification of Dw1, a regulator of sorghum stem internode length. PLoS ONE 11, e0151271.
|
Hilley, J.L., Weers, B.D., Truong, S.K., McCormick, R.F., Mattison, A.J., McKinley, B.A., Morishige, D.T.,Mullet, J.E., 2017. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Sci. Rep. 7, 4616.
|
Hooper, C.M., Castleden, I.R., Aryamanesh, N., Jacoby, R.P.,Millar, A.H., 2016. Finding the subcellular location of barley, wheat, rice and maize proteins: The compendium of crop proteins with annotated locations (croppal). Plant Cell Physiol. 57, e9.
|
Hu, P., Chapman, S.C., Wang, X., Potgieter, A., Duan, T., Jordan, D., Guo, Y.,Zheng, B., 2018. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. Eur. J. Agron. 95, 24-32.
|
Huang, C.F., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y.,Ma, J.F., 2009. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21, 655-667.
|
Huang, S., Gao, J., You, J., Liang, Y., Guan, K., Yan, S., Zhan, M.,Yang, Z., 2018. Identification of STOP1-like proteins associated with aluminum tolerance in sweet sorghum (Sorghum bicolor L.). Front. Plant Sci. 9, 258.
|
Jensen, S.E., Charles, J.R., Muleta, K., Bradbury, P.J., Casstevens, T., Deshpande, S.P., Gore, M.A., Gupta, R., Ilut, D.C.,Johnson, L., 2020. A sorghum practical haplotype graph facilitates genome-wide imputation and cost-effective genomic prediction. Plant Genome 13, e20009.
|
Jiao, Y., Burke, J., Chopra, R., Burow, G., Chen, J., Wang, B., Hayes, C., Emendack, Y., Ware, D.,Xin, Z., 2016. A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28, 1551-1562.
|
Jiao, Y., Burow, G., Gladman, N., Acosta-Martinez, V., Chen, J., Burke, J., Ware, D.,Xin, Z., 2017. Efficient identification of causal mutations through sequencing of bulked F2 from two allelic bloomless mutants of Sorghum bicolor. Front. Plant Sci. 8, 2267.
|
Jiao, Y., Lee, Y.K., Gladman, N., Chopra, R., Christensen, S.A., Regulski, M., Burow, G., Hayes, C., Burke, J., Ware, D., et al., 2018. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat. Commun. 9, 822.
|
Jin, X., Zheng, Y., Wang, J., Chen, W., Yang, Z., Chen, Y., Yang, Y., Lu, G.,Sun, B., 2023. SbNAC9 improves drought tolerance by enhancing scavenging ability of reactive oxygen species and activating stress-responsive genes of sorghum. Int. J. Mol. Sci. 24.
|
Joshi, D.C., Singh, V., Hunt, C., Mace, E., van Oosterom, E., Sulman, R., Jordan, D.,Hammer, G., 2017. Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum. Plant methods 13, 1-12.
|
Josie L. et al., 2017 Josie L. Hilley, B.D. W, Sandra K. Truong, Ryan F. McCormick, Ashley J. Mattison, Brian A. McKinley, Daryl T. Morishige & John E. Mulle, 2017. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Sci. Rep. 7, 4616.
|
Kevin L. Childs, F.R.M., Marie-Michele Cordonnier-Pratt, Lee H. Pratt, Page W. Morgan, and John E. Mulle, 1997. The sorghum photoperiod sensitivity gene, Ma, encodes a phytochrome B. Plant Physiol. 113, 611-619.
|
Klein, R.R., Miller, F.R., Dugas, D.V., Brown, P.J., Burrell, A.M.,Klein, P.E., 2015. Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theor. Appl. Genet. 128, 1669-1683.
|
Lai, X., Yan, L., Lu, Y.,Schnable, J.C., 2018. Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum. Plant J. 93, 843-855.
|
Lee, S., Fu, F., Liao, C.J., Mewa, D.B., Adeyanju, A., Ejeta, G., Lisch, D.,Mengiste, T., 2022. Broad-spectrum fungal resistance in sorghum is conferred through the complex regulation of an immune receptor gene embedded in a natural antisense transcript. Plant Cell 34, 1641-1665.
|
Li, A., Jia, S., Yobi, A., Ge, Z., Sato, S.J., Zhang, C., Angelovici, R., Clemente, T.E, Holding, D.R, 2018a. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol. 177, 1425-1438.
|
Li, H., Li, Y., Ke, Q., Kwak, S.-S., Zhang, S., Deng, X.J.I.J.o.M.S, 2020. Physiological and differential proteomic analyses of imitation drought stress response in sorghum bicolor root at the seedling stage. Int. J. Mol. Sci. 21, 9174.
|
Li, J., Pan, W., Zhang, S., Ma, G., Li, A., Zhang, H.,Liu, L., 2024. A rapid and highly efficient sorghum transformation strategy using GRF4-GIF1/ternary vector system. Plant J. 117, 1604-1613.
|
Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C.,Xu, C., 2018b. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol.
|
Li, X., Li, X., Fridman, E., Tesso, T.T.,Yu, J., 2015. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proc. Natl. Acad. Sci. U. S. A. 112, 11823-11828.
|
Liedtke, J.D., Hunt, C.H., George-Jaeggli, B., Laws, K., Watson, J., Potgieter, A.B., Cruickshank, A.,Jordan, D.R., 2020. High-throughput phenotyping of dynamic canopy traits associated with stay-green in grain sorghum. Plant Phenomics 2020, 4635153.
|
Lin, Z., Li, X., Shannon, L.M., Yeh, C.T., Wang, M.L., Bai, G., Peng, Z., Li, J., Trick, H.N., Clemente, T.E., et al., 2012. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44, 720-724.
|
Liu, G., Gilding, E.K., Kerr, E.D., Schulz, B.L., Tabet, B., Hamaker, B.R.,Godwin, I.D., 2019a. Increasing protein content and digestibility in sorghum grain with a synthetic biology approach. J. Cereal Sci. 85, 27-34.
|
Liu, G., Li, J.,Godwin, I.D., 2019b. Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. Methods Mol. Biol. 1931, 169-183.
|
Liu, H., Liu, H., Zhou, L., Zhang, Z., Zhang, X., Wang, M., Li, H.,Lin, Z., 2015. Parallel domestication of the Heading Date 1 gene in cereals. Mol. Biol. Evol. 32, 2726-2737.
|
Liu, Y., Wang, Z., Wu, X., Zhu, J., Luo, H., Tian, D., Li, C., Luo, J., Zhao, W.,Hao, H., 2021. SorGSD: Updating and expanding the sorghum genome science database with new contents and tools. Biotechnol. Biofuels 14, 165.
|
Lozano, R., Gazave, E., Dos Santos, J.P.R., Stetter, M.G., Valluru, R., Bandillo, N., Fernandes, S.B., Brown, P.J., Shakoor, N., Mockler, T.C., et al., 2021. Comparative evolutionary genetics of deleterious load in sorghum and maize. Nat. Plants 7, 17-24.
|
Luo, H., Zhao, W., Wang, Y., Xia, Y., Wu, X., Zhang, L., Tang, B., Zhu, J., Fang, L.,Du, Z., 2016. Sorgsd: A sorghum genome SNP database. Biotechnol. biofuels 9, 1-9.
|
Lv, Y., Chen, J., Zhu, M., Liu, Y., Wu, X., Xiao, X., Yuyama, N., Liu, F., Jing, H.,Cai, H., 2022. Wall-associated kinase-like gene RL1 contributes to red leaves in sorghum. Plant J. 112, 135-150.
|
Mace, E., Innes, D., Hunt, C., Wang, X., Tao, Y., Baxter, J., Hassall, M., Hathorn, A.,Jordan, D., 2019. The sorghum QTL Atlas: A powerful tool for trait dissection, comparative genomics and crop improvement. Theor. Appl. Genet. 132, 751-766.
|
Mace, E.S., Tai, S., Gilding, E.K., Li, Y., Prentis, P.J., Bian, L., Campbell, B.C., Hu, W., Innes, D.J., Han, X., et al., 2013. Whole-genome sequencing reveals untapped genetic potential in africa's indigenous cereal crop sorghum. Nat. Commun. 4, 2320.
|
Magalhaes, J.V., Liu, J., Guimaraes, C.T., Lana, U.G., Alves, V.M., Wang, Y.H., Schaffert, R.E., Hoekenga, O.A., Pineros, M.A., Shaff, J.E., et al., 2007. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat. Genet. 39, 1156-1161.
|
Makita, Y., Shimada, S., Kawashima, M., Kondou-Kuriyama, T., Toyoda, T.,Matsui, M., 2015. MOROKOSHI: Transcriptome database in Sorghum bicolor. Plant Cell Physiol. 56, e6.
|
McCormick, R.F., Truong, S.K., Sreedasyam, A., Jenkins, J., Shu, S., Sims, D., Kennedy, M., Amirebrahimi, M., Weers, B.D., McKinley, B., et al., 2018. The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 93, 338-354.
|
Monte, E., Alonso, J.M., Ecker, J.R., Zhang, Y., Li, X., Young, J., Austin-Phillips, S.,Quail, P.H., 2003. Isolation and characterization of phyc mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant cell 15, 1962-1980.
|
Morris, G.P., Ramu, P., Deshpande, S.P., Hash, C.T., Shah, T., Upadhyaya, H.D., Riera-Lizarazu, O., Brown, P.J., Acharya, C.B., Mitchell, S.E., et al., 2013. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. U. S. A. 110, 453-458.
|
Multani, D.S., Briggs, S.P., Chamberlin, M.A., Blakeslee, J.J., Murphy, A.S.,Johal, G.S., 2003. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81-84.
|
Murphy, R.L., Klein, R.R., Morishige, D.T., Brady, J.A., Rooney, W.L., Miller, F.R., Dugas, D.V., Klein, P.E.,Mullet, J.E., 2011. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc. Natl. Acad. Sci. U. S. A. 108, 16469-16474.
|
Murphy, R.L., Morishige, D.T., Brady, J.A., Rooney, W.L., Yang, S., Klein, P.E.,Mullet, J.E., 2014. Ghd7 (Ma6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome 7.
|
Nelson-Vasilchik, K., Hague, J.P., Tilelli, M.,Kausch, A.P., 2022. Rapid transformation and plant regeneration of sorghum (Sorghum bicolor L.) mediated by altruistic Baby boom and Wuschel2. In Vitro Cell Dev. Biol. Plant 58, 331-342.
|
Ngara, R., Ramulifho, E., Movahedi, M., Shargie, N.G., Brown, A.P.,Chivasa, S.J.S.R., 2018. Identifying differentially expressed proteins in sorghum cell cultures exposed to osmotic stress. Sci. Rep. 8, 8671.
|
Ngcala, M.G., Goche, T., Brown, A.P., Chivasa, S.,Ngara, R.J.P., 2020. Heat stress triggers differential protein accumulation in the extracellular matrix of sorghum cell suspension cultures. Proteomes 8, 29.
|
Oliver, J., Fan, M., McKinley, B., Zemelis-Durfee, S., Brandizzi, F., Wilkerson, C.,Mullet, J.E., 2021. The AGCVIII kinase Dw2 modulates cell proliferation, endomembrane trafficking, and MLG /xylan cell wall localization in elongating stem internodes of Sorghum bicolor. Plant J. 105, 1053-1071.
|
Olson, A., Klein, R.R., Dugas, D.V., Lu, Z., Regulski, M., Klein, P.E.,Ware, D.J.T.P.G., 2014. Expanding and vetting Sorghum bicolor gene annotations through transcriptome and methylome sequencing. Plant Genome 7.
|
Ortiz, D.,Salas-Fernandez, M.G., 2022. Dissecting the genetic control of natural variation in sorghum photosynthetic response to drought stress. J. Exp. Bot. 73, 3251-3267.
|
Parry, M.A.,Hawkesford, M.J., 2010. Food security: Increasing yield and improving resource use efficiency. Proc. Nutr. Soc. 69, 592-600.
|
Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., et al., 2009. The sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556.
|
Prasad, V.R., Govindaraj, M., Djanaguiraman, M., Djalovic, I., Shailani, A., Rawat, N., Singla-Pareek, S.L., Pareek, A.,Prasad, P.V., 2021. Drought and high temperature stress in sorghum: Physiological, genetic, and molecular insights and breeding approaches. Int. J. Mol. Sci. 22, 9826.
|
Punia, H., Tokas, J., Bhadu, S., Mohanty, A.K., Rawat, P., Malik, A,Satpal, 2020. Proteome dynamics and transcriptome profiling in sorghum [Sorghum bicolor (L.) Moench] under salt stress. 3 Biotech 10, 412.
|
Rajarajan, K., Ganesamurthy, K., Raveendran, M., Jeyakumar, P., Yuvaraja, A., Sampath, P., Prathima, P.,Senthilraja, C., 2021. Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis. Mol. Biol. Rep. 48, 2453-2462.
|
Ruperao, P., Thirunavukkarasu, N., Gandham, P., Selvanayagam, S., Govindaraj, M., Nebie, B., Manyasa, E., Gupta, R., Das, R.R., Odeny, D.A., et al., 2021. Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Front. Plant Sci. 12, 666342.
|
Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T.,Fernie, A.R., 2013. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiol. Biochem. 72, 21-34.
|
Sapkota, S., Boatwright, J.L., Kumar, N., Myers, M., Cox, A., Ackerman, A., Caughman, W., Brenton, Z.W., Boyles, R.E.,Kresovich, S., 2023. Genomic prediction of hybrid performance for agronomic traits in sorghum. G3 (Bethesda). 13.
|
Schuh, A., Felderhoff, T.J., Marla, S.,Morris, G.P., 2024. Precise colocalization of sorghum's major chilling tolerance locus with Tannin1 due to tight linkage drag rather than antagonistic pleiotropy. Theor. Appl. Genet. 137, 42.
|
Song, Y., Li, J., Sui, Y., Han, G., Zhang, Y., Guo, S.,Sui, N., 2020. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Mol. Biol. 102, 603-614.
|
Song, Y., Zheng, H., Sui, Y., Li, S., Wu, F., Sun, X.,Sui, N., 2022. SbWRKY55 regulates sorghum response to saline environment by its dual role in abscisic acid signaling. Theor. Appl. Genet. 135, 2609-2625.
|
Spannagl, M., Nussbaumer, T., Bader, K.C., Martis, M.M., Seidel, M., Kugler, K.G., Gundlach, H.,Mayer, K.F., 2016. PGSB plantsDB: Updates to the database framework for comparative plant genome research. Nucleic Acids Res. 44, D1141-1147.
|
Spellmon, N., Holcomb, J., Trescott, L., Sirinupong, N.,Yang, Z., 2015. Structure and function of SET and MYND domain-containing proteins. Int. J. Mol. Sci. 16, 1406-1428.
|
Sun, S., Wang, L., Mao, H., Shao, L., Li, X., Xiao, J., Ouyang, Y.,Zhang, Q., 2018. A G-protein pathway determines grain size in rice. Nat. Commun. 9, 851.
|
Sun, W., Zhang, H., Yang, S., Liu, L., Xie, P., Li, J., Zhu, Y., Ouyang, Y., Xie, Q., Zhang, H., et al., 2023. Genetic modification of Gγ subunit AT1 enhances salt-alkali tolerance in main graminaceous crops. Natl. Sci. Rev. 10, nwad075.
|
Sun, X., Zheng, H., Li, J., Liu, L., Zhang, X.,Sui, N., 2020. Comparative transcriptome analysis reveals new lncRNAs responding to salt stress in sweet sorghum. Front. bioeng. biotechnol. 8, 331.
|
Takanashi, H., Kajiya-Kanegae, H., Nishimura, A., Yamada, J., Ishimori, M., Kobayashi, M., Yano, K., Iwata, H., Tsutsumi, N.,Sakamoto, W., 2022. DOMINANT AWN INHIBITOR encodes the ALOG protein originating from gene duplication and inhibits AWN elongation by suppressing cell proliferation and elongation in sorghum. Plant Cell Physiol. 63, 901-918.
|
Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., Yano, M., Nishimura, M., Miyao, A., Hirochika, H., et al., 2005. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17, 3311-3325.
|
Tang, H., Cuevas, H.E., Das, S., Sezen, U.U., Zhou, C., Guo, H., Goff, V.H., Ge, Z., Clemente, T.E.,Paterson, A.H., 2013. Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proc. Natl. Acad. Sci. U.S. A. 110, 15824-15829.
|
Tao, Y., Luo, H., Xu, J., Cruickshank, A., Zhao, X., Teng, F., Hathorn, A., Wu, X., Liu, Y., Shatte, T., et al., 2021a. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat. Plants 7, 766-773.
|
Tao, Y., Trusov, Y., Zhao, X., Wang, X., Cruickshank, A.W., Hunt, C., van Oosterom, E.J., Hathorn, A., Liu, G., Godwin, I.D., et al., 2021b. Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum. Plant J. 108, 231-243.
|
Tao, Y., Zhao, X., Mace, E., Henry, R.,Jordan, D., 2019. Exploring and exploiting pan-genomics for crop improvement. Mol. Plant 12, 156-169.
|
Tian, T., You, Q., Zhang, L., Yi, X., Yan, H., Xu, W.,Su, Z., 2016. SorghumFDB: Sorghum functional genomics database with multidimensional network analysis. Database (Oxford) 2016.
|
Tugizimana, F., Djami-Tchatchou, A.T., Steenkamp, P.A., Piater, L.A.,Dubery, I.A., 2019. Metabolomic analysis of defense-related reprogramming in sorghum bicolor in response to colletotrichum sublineolum infection reveals a functional metabolic web of phenylpropanoid and flavonoid pathways. Front. Plant Sci. 9, 1840.
|
Bateman, A.M., M.J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.;,Bursteinas, B., 2021. Uniprot: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480-d489.
|
Upadhyaya, H.D., Wang, L., Prakash, C.S., Liu, Y., Gao, L., Meng, R., Seetharam, K., Gowda, C.L.L., Ganesamurthy, K., Singh, S.K., et al., 2022. Genome-wide association mapping identifies an SNF4 ortholog that impacts biomass and sugar yield in sorghum and sugarcane. J. Exp. Bot. 73, 3584-3596.
|
Valentin, G., Abdel, T., Gaetan, D., Jean-Francois, D., Matthieu, C.,Mathieu, R., 2021. GreenPhylDB v5: A comparative pangenomic database for plant genomes. Nucleic Acids Res. 49, D1464-D1471.
|
Wallace, J.G., Rodgers-Melnick, E.,Buckler, E.S., 2018. On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421-444.
|
Wang, G., Long, Y., Jin, X., Yang, Z., Dai, L., Yang, Y., Lu, G.,Sun, B., 2024. SbMYC2 mediates jasmonic acid signaling to improve drought tolerance via directly activating SbGR1 in sorghum. Theor. Appl. Genet. 137, 72.
|
Wang, L., Lu, Z., Regulski, M., Jiao, Y., Chen, J., Ware, D.,Xin, Z., 2021. BSAseq: An interactive and integrated web-based workflow for identification of causal mutations in bulked F2 populations. Bioinform. 37, 382-387.
|
Wang, T.T., Ren, Z.J., Liu, Z.Q., Feng, X., Guo, R.Q., Li, B.G., Li, L.G., Jing, H.C.J.J.o.I.P.B 2014. SbHKT1;4, a member of the high-affinity potassium transporter gene family from sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J. Integr. Plant Biol. 56, 315-332.
|
Wang, N., Ryan, L., Sardesai, N., Wu, E., Lenderts, B., Lowe, K., Che, P., Anand, A., Worden, A., van Dyk, D., et al., 2023. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nat. Plants 9, 255-270.
|
Wei, C., Gao, L., Xiao, R., Wang, Y., Chen, B., Zou, W., Li, J., Mace, E., Jordan, D.,Tao, Y., 2024. Complete telomere-to-telomere assemblies of two sorghum genomes to guide biological discovery. Imeta 3, e193.
|
Wenzl, P., Raman, H., Wang, J., Zhou, M., Huttner, E.,Kilian, A., 2007. A dart platform for quantitative bulked segregant analysis. BMC Genomics 8, 196.
|
Woldesemayat, A.A., Modise, D.M.,Ndimba, B.K., 2018. Identification of proteins in response to terminal drought stress in sorghum (Sorghum bicolor (L.) Moench) using two-dimensional gel-electrophoresis and MALDI-TOF-TOF MS/MS. Indian J. Plant Physiol. 23, 24-39.
|
Wu, X., Liu, Y., Luo, H., Shang, L., Leng, C., Liu, Z., Li, Z., Lu, X., Cai, H., Hao, H., et al., 2022. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Mol. Plant 15, 537-551.
|
Wu, Y., Guo, T., Mu, Q., Wang, J., Li, X., Wu, Y., Tian, B., Wang, M.L., Bai, G., Perumal, R., et al., 2019. Allelochemicals targeted to balance competing selections in african agroecosystems. Nat. Plants 5, 1229-1236.
|
Wu, Y., Li, X., Xiang, W., Zhu, C., Lin, Z., Wu, Y., Li, J., Pandravada, S., Ridder, D.D., Bai, G., et al., 2012. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proc. Natl. Acad. Sci. U. S.A. 109, 10281-10286.
|
Xia, J., Zhao, Y., Burks, P., Pauly, M.,Brown, P.J., 2018. A sorghum NAC gene is associated with variation in biomass properties and yield potential. Plant Direct 2, e00070.
|
Xie, P., Liu, F.,Xie, Q., 2024. Manipulating hormones to mitigate trade-offs in crops. Authorea Preprints.
|
Xie, P., Shi, J., Tang, S., Chen, C., Khan, A., Zhang, F., Xiong, Y., Li, C., He, W., Wang, G., et al., 2019. Control of bird feeding behavior by Tannin1 through modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in sorghum. Mol. Plant 12, 1315-1324.
|
Xie, P., Tang, S., Chen, C., Zhang, H., Yu, F., Li, C., Wei, H., Sui, Y., Wu, C., Diao, X., et al., 2022. Natural variation in Glume Coverage 1 causes naked grains in sorghum. Nat. Commun. 13, 1068.
|
Xie, P., Wu, Y.,Xie, Q., 2023. Evolution of cereal floral architecture and threshability. Trends Plant Sci. 28, 1438-1450.
|
Xie, Q.,Xu, Z., 2019. Sustainable agriculture: From sweet sorghum planting and ensiling to ruminant feeding. Mol. Plant 12, 603-606.
|
Xin, Z., Wang, M.L., Barkley, N.A., Burow, G., Franks, C., Pederson, G.,Burke, J., 2008. Applying genotyping (tilling) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol. 8, 103.
|
Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., et al., 2008. Natural variation in GHD7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767.
|
Yamaguchi, M., Fujimoto, H., Hirano, K., Araki-Nakamura, S., Ohmae-Shinohara, K., Fujii, A., Tsunashima, M., Song, X.J., Ito, Y., Nagae, R., et al., 2016. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci. Rep. 6, 28366.
|
Yang, S., Murphy, R.L., Morishige, D.T., Klein, P.E., Rooney, W.L.,Mullet, J.E., 2014. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS ONE 9, e105352.
|
Yang, W., Wu, K., Wang, B., Liu, H., Guo, S., Guo, X., Luo, W., Sun, S., Ouyang, Y., Fu, X., et al., 2021. The ring E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Mol. Plant 14, 1699-1713.
|
Yang, Z., Chi, X., Guo, F., Jin, X., Luo, H., Hawar, A., Chen, Y., Feng, K., Wang, B., Qi, J., et al., 2020. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J. Plant Physiol. 246-247, 153142.
|
Youens-Clark, K., Buckler, E., Casstevens, T., Chen, C., Declerck, G., Derwent, P., Dharmawardhana, P., Jaiswal, P., Kersey, P., Karthikeyan, A.S., et al., 2011. Gramene database in 2010: Updates and extensions. Nucleic Acids Res. 39, D1085-1094.
|
Young, S.N., Kayacan, E.,Peschel, J.M., 2019. Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precis. Agric. 20, 697-722.
|
Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., et al., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.e1114.
|
Zhang, D., Tang, S., Xie, P., Yang, D., Wu, Y., Cheng, S., Du, K., Xin, P., Chu, J., Yu, F., et al., 2022a. Creation of fragrant sorghum by CRISPR/CAS9. J. Integr. Plant Biol. 64, 961-964.
|
Zhang, L., Ding, Y., Xu, J., Gao, X., Cao, N., Li, K., Feng, Z., Cheng, B., Zhou, L., Ren, M., et al., 2022b. Selection signatures in Chinese Sorghum reveals its unique liquor-making properties. Front. Plant Sci. 13, 923734.
|
Zhang, L.M., Leng, C.Y., Luo, H., Wu, X.Y., Liu, Z.Q., Zhang, Y.M., Zhang, H., Xia, Y., Shang, L., Liu, C.M., et al., 2018. Sweet sorghum originated through selection of Dry, a plant-specific nac transcription factor gene. Plant Cell 30, 2286-2307.
|
Zhang, H., Yu, F., Xie, P., Sun, S., Qiao, X., Tang, S., Chen, C., Yang, S., Mei, C.,Yang, D., 2023. A Gγ protein regulates alkaline sensitivity in crops. Science 379.
|
Zheng, H., Gao, Y., Dang, Y., Wu, F., Wang, X., Zhang, F.,Sui, N., 2023. Characterization of the m6a gene family in sorghum and its function in growth, development and stress resistance. Ind. Crops Prod. 198, 116625.
|
Zheng, H., Sun, X., Li, J., Song, Y., Song, J., Wang, F., Liu, L., Zhang, X.,Sui, N., 2021. Analysis of n(6)-methyladenosine reveals a new important mechanism regulating the salt tolerance of sweet sorghum. Plant Sci. 304, 110801.
|
Zhou, C., Zhou, H., Ma, X., Yang, H., Wang, P., Wang, G., Zheng, L., Zhang, Y.,Liu, X., 2021a. Genome-wide identification and characterization of main histone modifications in sorghum decipher regulatory mechanisms involved by mrna and long noncoding rna genes. J. Agric. Food Chem. 69, 2337-2347.
|
Zhou, H., Yuan, Z., Han, S., He, H., Rong, J., Guo, D., Zhang, Y., Zhang, D., Liu, X.,Zhou, C., 2023. Global decrease in H3K9 acetylation in sorghum seed postgermination stages. J. Agric. Food Chem. 71, 5836-5850.
|
Zhou, L., Zhu, C., Fang, X., Liu, H., Zhong, S., Li, Y., Liu, J., Song, Y., Jian, X.,Lin, Z., 2021b. Gene duplication drove the loss of awn in sorghum. Mol. Plant 14, 1831-1845.
|
Zhou, M., Zhao, B., Li, H., Ren, W., Zhang, Q., Liu, Y.,Zhao, J., 2022. Comprehensive analysis of MAPK cascade genes in sorghum (sorghum bicolor L.) reveals SbMAPK14 as a potential target for drought sensitivity regulation. Genomics 114, 110311.
|
Zhou, Y., Wang, Z., Li, Y., Li, Z., Liu, H.,Zhou, W., 2020. Metabolite profiling of sorghum seeds of different colors from different sweet sorghum cultivars using a widely targeted metabolomics approach. Int. J. Genomics 2020, 6247429.
|
Zou, G., Zhai, G., Yan, S., Li, S., Zhou, L., Ding, Y., Liu, H., Zhang, Z., Zou, J., Zhang, L., et al., 2020. Sorghum qTGW1a encodes a g-protein subunit and acts as a negative regulator of grain size. J. Exp. Bot. 71, 5389-5401.
|