Altae-Tran, H., Kannan, S., Demircioglu, F.E., Oshiro, R., Nety, S.P., McKay, L.J., Dlakic, M., Inskeep, W.P., Makarova, K.S., Macrae, R.K., et al., 2021. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57-65.
|
Antoniou, P., Hardouin, G., Martinucci, P., Frati, G., Felix, T., Chalumeau, A., Fontana, L., Martin, J., Masson, C., Brusson, M., et al., 2022. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nat. Commun. 13, 6618.
|
Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
|
Badon, I.W., Oh, Y., Kim, H.J., and Lee, S.H., 2024. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol. Ther. 32, 32-43.
|
Bao, X., Zhang, X., Wang, L., Wang, Z., Huang, J., Zhang, Q., Ye, Y., Liu, Y., Chen, D., Zuo, Y., et al., 2021. Epigenetic inactivation of ERF reactivates γ-globin expression in β-thalassemia. Am. J. Hum. Genet. 108, 709-721.
|
Canver, M.C., Smith, E.C., Sher, F., Pinello, L., Sanjana, N.E., Shalem, O., Chen, D.D., Schupp, P.G., Vinjamur, D.S., Garcia, S.P., et al., 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192-197.
|
Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., and Doudna, J.A., 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436-439.
|
Chen, L., Zhu, B., Ru, G., Meng, H., Yan, Y., Hong, M., Zhang, D., Luan, C., Zhang, S., Wu, H., et al., 2023. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 41, 663-672.
|
Chen, Y., Luo, X., Kang, R., Cui, K., Ou, J., Zhang, X., Liang, P., Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J. Genet. Genom. 2024 51:159-183.
|
Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., and Voytas, D.F., 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761.
|
Desai, M.A., Webb, H.D., Sinanan, L.M., Scarsdale, J.N., Walavalkar, N.M., Ginder, G.D., and Williams, D.C., Jr., 2015. An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex. Nucleic Acids Res. 43, 3100-3113.
|
DeWitt, M.A., Magis, W., Bray, N.L., Wang, T., Berman, J.R., Urbinati, F., Heo, S.J., Mitros, T., Munoz, D.P., Boffelli, D., et al., 2016. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 8, 360ra134.
|
Eaton, W.A., and Hofrichter, J., 1987. Hemoglobin S gelation and sickle cell disease. Blood 70, 1245-1266.
|
Emambokus, N., Vegiopoulos, A., Harman, B., Jenkinson, E., Anderson, G., and Frampton, J., 2003. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 22, 4478-4488.
|
Everette, K.A., Newby, G.A., Levine, R.M., Mayberry, K., Jang, Y., Mayuranathan, T., Nimmagadda, N., Dempsey, E., Li, Y., Bhoopalan, S.V., et al., 2023. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat. Biomed. Eng. 7, 616-628.
|
Fang, Y., Cheng, Y., Lu, D., Gong, X., Yang, G., Gong, Z., Zhu, Y., Sang, X., Fan, S., Zhang, J., et al., 2018. Treatment of β(654) - thalassaemia by TALENs in a mouse model. Cell Prolif. 51, e12491.
|
Feng, R., Mayuranathan, T., Huang, P., Doerfler, P.A., Li, Y., Yao, Y., Zhang, J., Palmer, L.E., Mayberry, K., Christakopoulos, G.E., et al., 2022. Activation of γ-globin expression by hypoxia-inducible factor 1α. Nature 610, 783-790.
|
Fischer, K.D., and Nowock, J., 1990. The T-C substitution at -198 of the A gamma-globin gene associated with the British form of HPFH generates overlapping recognition sites for two DNA-binding proteins. Nucleic Acids Res. 18, 5685-5693.
|
Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A., and Charpentier, E., 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517-521.
|
Frangoul, H., Altshuler, D., Cappellini, M.D., Chen, Y.S., Domm, J., Eustace, B.K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., et al., 2021. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252-260.
|
Friedmann, T., and Roblin, R., 1972. Gene therapy for human genetic disease? Science. 175, 949-955.
|
Fu, B., Liao, J., Chen, S., Li, W., Wang, Q., Hu, J., Yang, F., Hsiao, S., Jiang, Y., Wang, L., et al., 2022. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β(0)/β(0) transfusion-dependent β-thalassemia. Nat. Med. 28, 1573-1580.
|
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R., 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464-471.
|
Gong, Y., Zhang, X., Zhang, Q., Zhang, Y., Ye, Y., Yu, W., Shao, C., Yan, T., Huang, J., Zhong, J., et al., 2021. A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia. Blood 137, 1652-1657.
|
Guo, X., Plank-Bazinet, J., Krivega, I., Dale, R.K., and Dean, A., 2020. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res. 48, 10226-10240.
|
Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., and Taipale, J., 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927-930.
|
Han, J.P., Kim, M., Choi, B.S., Lee, J.H., Lee, G.S., Jeong, M., Lee, Y., Kim, E.A., Oh, H.K., Go, N., et al., 2022. In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv. 8, eabj6901.
|
Han, W., Qiu, H.Y., Sun, S., Fu, Z.C., Wang, G.Q., Qian, X., Wang, L., Zhai, X., Wei, J., Wang, Y., et al., 2023. Base editing of the HBG promoter induces potent fetal hemoglobin expression with no detectable off-target mutations in human HSCs. Cell Stem Cell 30, 1624-1639.
|
Hoban, M.D., and Bauer, D.E., 2016. A genome editing primer for the hematologist. Blood 127, 2525-2535.
|
Hoban, M.D., Cost, G.J., Mendel, M.C., Romero, Z., Kaufman, M.L., Joglekar, A.V., Ho, M., Lumaquin, D., Gray, D., Lill, G.R., et al., 2015. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125, 2597-2604.
|
Hu, Z., Li, Z., Wu, Y., Zhao, J., Wu, L., Zhou, M., and Liang, D., 2022. Targeted B-domain deletion restores F8 function in human endothelial cells and mice. Signal Transduct. Target. Ther. 7, 189.
|
Huang, P., Peslak, S.A., Lan, X., Khandros, E., Yano, J.A., Sharma, M., Keller, C.A., Giardine, B., Qin, K., Abdulmalik, O., et al., 2020. The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood 135, 2121-2132.
|
Ivaldi, M.S., Diaz, L.F., Chakalova, L., Lee, J., Krivega, I., and Dean, A., 2018. Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood 132, 1963-1973.
|
Jacob, G.F., and Raper, A.B., 1958. Hereditary persistence of fetal haemoglobin production, and its interaction with the sickle-cell trait. Br. J. Haematol. 4, 138-149.
|
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
|
Ju, J., Wang, Y., Liu, R., Zhang, Y., Xu, Z., Wang, Y., Wu, Y., Liu, M., Cerruti, L., Zou, F., et al., 2014. Human fetal globin gene expression is regulated by LYAR. Nucleic Acids Res. 42, 9740-9752.
|
Kalantri, S.A., Ray, R., Chattopadhyay, A., and Bhattacharyya, M., 2017. Decitabine as hemoglobin F inducer in hemoglobin E/β thalassemia. Blood 130, 2224-2224.
|
Karvelis, T., Druteika, G., Bigelyte, G., Budre, K., Zedaveinyte, R., Silanskas, A., Kazlauskas, D., Venclovas, C., and Siksnys, V., 2021. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692-696.
|
Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T., and Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376.
|
Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., and Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843-846.
|
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
|
Krivega, I., Byrnes, C., de Vasconcellos, J.F., Lee, Y.T., Kaushal, M., Dean, A., and Miller, J.L., 2015. Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping. Blood 126, 665-672.
|
Lamsfus-Calle, A., Daniel-Moreno, A., Antony, J.S., Epting, T., Heumos, L., Baskaran, P., Admard, J., Casadei, N., Latifi, N., Siegmund, D.M., et al., 2020. Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34(CD34+) HSPCs by CRISPR/Cas9 for the induction of fetal hemoglobin. Sci. Rep. 10, 10133.
|
Lan, X., Khandros, E., Huang, P., Peslak, S.A., Bhardwaj, S.K., Grevet, J.D., Abdulmalik, O., Wang, H., Keller, C.A., Giardine, B., et al., 2019. The E3 ligase adaptor molecule SPOP regulates fetal hemoglobin levels in adult erythroid cells. Blood Adv. 3, 1586-1597.
|
Lan, X., Ren, R., Feng, R., Ly, L.C., Lan, Y., Zhang, Z., Aboreden, N., Qin, K., Horton, J.R., Grevet, J.D., et al., 2020. ZNF410 uniquely activates the NuRD component CHD4 to silence fetal hemoglobin expression. Mol. Cell 81, 239-254.
|
Li, C., Georgakopoulou, A., Newby, G.A., Chen, P.J., Everette, K.A., Paschoudi, K., Vlachaki, E., Gil, S., Anderson, A.K., Koob, T., et al., 2023. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 141, 2085-2099.
|
Liao, J., Chen, S., Hsiao, S., Jiang, Y., Yang, Y., Zhang, Y., Wang, X., Lai, Y., Bauer, D.E., and Wu, Y., 2023. Therapeutic adenine base editing of human hematopoietic stem cells. Nat. Commun. 14, 207.
|
Liu, N., Hargreaves, V.V., Zhu, Q., Kurland, J.V., Hong, J., Kim, W., Sher, F., Macias-Trevino, C., Rogers, J.M., Kurita, R., et al., 2018. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430-442.
|
Liu, N., Xu, S., Yao, Q., Zhu, Q., Kai, Y., Hsu, J.Y., Sakon, P., Pinello, L., Yuan, G.C., Bauer, D.E., et al., 2021. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat. Genet. 53, 511-520.
|
Liu, R., Wang, L., Xu, H., Yin, X., Liang, J., Xie, W., Yang, G., Li, Y., Zhou, Y., Shi, L., et al., 2023. Safety and efficacy of RM-001 (autologous HBG1/2 promoter-modified CD34CD34+ hematopoietic stem and progenitor cells) in patients with transfusion-dependent β-thalassemia. Blood 142, 4994.
|
Liu, R., Xu, H., Liang, J., Xie, W., Yang, G., Shi, L., Shi, L., Fang, J., Li, C., Shi, Z., et al., 2022. Preliminary result of the safety and efficacy of autologous HBG1/2 promoter-modified CD34CD34+ hematopoietic stem and progenitor cells (RM-001) in transfusion-dependent βeta-thalassemia. Blood 140, 4915-4916.
|
Lu, D., Gong, X., Fang, Y., Guo, X., Chen, Y., Yang, F., Zhao, G., Ma, Q., Zeng, Y., and Zeng, F., 2022. Correction of RNA splicing defect in β (654)-thalassemia mice using CRISPR/Cas9 gene-editing technology. Haematologica. 107, 1427-1437.
|
Lu, D.R., Zhou, J.M., Zheng, B., Qiu, X.F., Xue, J.L., Wang, J.M., Meng, P.L., Han, F.L., Ming, B.H., Wang, X.P., et al., 1993. Stage I clinical trial of gene therapy for hemophilia B. Sci. China B. 36, 1342-1351.
|
Ma, Y., Liu, S., Gao, J., Chen, C., Zhang, X., Yuan, H., Chen, Z., Yin, X., Sun, C., Mao, Y., et al., 2021. Genome-wide analysis of pseudogenes reveals HBBP1's human-specific essentiality in erythropoiesis and implication in β-thalassemia. Dev. Cell 56, 478-493.
|
Mantovani, R., 1999. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 239, 15-27.
|
Martyn, G.E., Wienert, B., Kurita, R., Nakamura, Y., Quinlan, K.G.R., and Crossley, M., 2019. A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site. Blood 133, 852-856.
|
Martyn, G.E., Wienert, B., Yang, L., Shah, M., Norton, L.J., Burdach, J., Kurita, R., Nakamura, Y., Pearson, R.C.M., Funnell, A.P.W., et al., 2018. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat. Genet. 50, 498-503.
|
Masuda, T., Wang, X., Maeda, M., Canver, M.C., Sher, F., Funnell, A.P., Fisher, C., Suciu, M., Martyn, G.E., Norton, L.J., et al., 2016. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351, 285-289.
|
Mayuranathan, T., Newby, G.A., Feng, R., Yao, Y., Mayberry, K.D., Lazzarotto, C.R., Li, Y., Levine, R.M., Nimmagadda, N., Dempsey, E., et al., 2023. Potent and uniform fetal hemoglobin induction via base editing. Nat. Genet. 55, 1210-1220.
|
Molokie, R., Lavelle, D., Gowhari, M., Pacini, M., Krauz, L., Hassan, J., Ibanez, V., Ruiz, M.A., Ng, K.P., Woost, P., et al., 2017. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: a randomized phase 1 study. PLoS Med. 14, e1002382.
|
Morgan, R.A., Gray, D., Lomova, A., and Kohn, D.B., 2017. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell 21, 574-590.
|
Mucenski, M.L., McLain, K., Kier, A.B., Swerdlow, S.H., Schreiner, C.M., Miller, T.A., Pietryga, D.W., Scott, W.J., Jr., and Potter, S.S., 1991. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677-689.
|
Mukai, H.Y., Motohashi, H., Ohneda, O., Suzuki, N., Nagano, M., and Yamamoto, M., 2006. Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation. Mol. Cell Biol. 26, 7953-7965.
|
Nakagawa, R., Hirano, H., Omura, S.N., Nety, S., Kannan, S., Altae-Tran, H., Yao, X., Sakaguchi, Y., Ohira, T., Wu, W.Y., et al., 2023. Cryo-EM structure of the transposon-associated TnpB enzyme. Nature 616, 390-397.
|
Newby, G.A., Yen, J.S., Woodard, K.J., Mayuranathan, T., Lazzarotto, C.R., Li, Y., Sheppard-Tillman, H., Porter, S.N., Yao, Y., Mayberry, K., et al., 2021. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295-302.
|
Nualkaew, T., Khamphikham, P., Pongpaksupasin, P., Kaewsakulthong, W., Songdej, D., Paiboonsukwong, K., Sripichai, O., Engel, J.D., Hongeng, S., Fucharoen, S., et al., 2020. UNC0638 induces high levels of fetal hemoglobin expression in β-thalassemia/HbE erythroid progenitor cells. Ann. Hematol. 99, 2027-2036.
|
Okam, M.M., Esrick, E.B., Mandell, E., Campigotto, F., Neuberg, D.S., and Ebert, B.L., 2015. Phase 1/2 trial of vorinostat in patients with sickle cell disease who have not benefitted from hydroxyurea. Blood 125, 3668-3669.
|
Qin, K., Huang, P., Feng, R., Keller, C.A., Peslak, S.A., Khandros, E., Saari, M.S., Lan, X., Mayuranathan, T., Doerfler, P.A., et al., 2022. Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nat. Genet. 54, 874-884.
|
Rank, G., Cerruti, L., Simpson, R.J., Moritz, R.L., Jane, S.M., and Zhao, Q., 2010. Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression. Blood 116, 1585-1592.
|
Renneville, A., Van Galen, P., Canver, M.C., McConkey, M., Krill-Burger, J.M., Dorfman, D.M., Holson, E.B., Bernstein, B.E., Orkin, S.H., Bauer, D.E., et al., 2015. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood 126, 1930-1939.
|
Roosjen, M., McColl, B., Kao, B., Gearing, L.J., Blewitt, M.E., and Vadolas, J., 2014. Transcriptional regulators Myb and BCL11A interplay with DNA methyltransferase 1 in developmental silencing of embryonic and fetal β-like globin genes. FASEB. J. 28, 1610-1620.
|
Saito, M., Xu, P., Faure, G., Maguire, S., Kannan, S., Altae-Tran, H., Vo, S., Desimone, A., Macrae, R.K., and Zhang, F., 2023. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 620, 660-668.
|
Sankaran, V.G., Menne, T.F., Xu, J., Akie, T.E., Lettre, G., Van Handel, B., Mikkola, H.K., Hirschhorn, J.N., Cantor, A.B., and Orkin, S.H., 2008. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839-1842.
|
Sasnauskas, G., Tamulaitiene, G., Druteika, G., Carabias, A., Silanskas, A., Kazlauskas, D., Venclovas, C., Montoya, G., Karvelis, T., and Siksnys, V., 2023. TnpB structure reveals minimal functional core of Cas12 nuclease family. Nature 616, 384-389.
|
Sher, F., Hossain, M., Seruggia, D., Schoonenberg, V.A.C., Yao, Q., Cifani, P., Dassama, L.M.K., Cole, M.A., Ren, C., Vinjamur, D.S., et al., 2019. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat. Genet. 51, 1149-1159.
|
Shi, L., Cui, S., Engel, J.D., and Tanabe, O., 2013. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat. Med. 19, 291-294.
|
Sousa, P., Janoudi, T., deDreuzy, E., Shearman, M.S., Zhang, K., and Chang, K.-H., 2021. Preclinical development of EDIT301, an autologous cell therapy comprising AsCas12a-RNP modified mobilized peripheral blood-CD34CD34+ cells for the potential treatment of transfusion dependent beta thalassemia. Blood 138, 1858.
|
Stoming, T.A., Stoming, G.S., Lanclos, K.D., Fei, Y.J., Altay, C., Kutlar, F., and Huisman, T.H., 1989. An A gamma type of nondeletional hereditary persistence of fetal hemoglobin with a T--C mutation at position -175 to the cap site of the A gamma globin gene. Blood 73, 329-333.
|
Swarts, D.C., van der Oost, J., and Jinek, M., 2017. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221-233.
|
Thein, S.L., 2018. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol. Dis. 70, 54-65.
|
Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V.G., Chen, W., Usala, G., Busonero, F., Maschio, A., Albai, G., et al., 2008. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. U. S. A. 105, 1620-1625.
|
Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D., 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636-646.
|
Wahlberg, K., Jiang, J., Rooks, H., Jawaid, K., Matsuda, F., Yamaguchi, M., Lathrop, M., Thein, S.L., and Best, S., 2009. The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells. Blood 114, 1254-1262.
|
Wang, J., Hevi, S., Kurash, J.K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al., 2009. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125-129.
|
Wang, L., Li, L., Ma, Y., Hu, H., Li, Q., Yang, Y., Liu, W., Yin, S., Li, W., Fu, B., et al., 2020. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies. Cell Res. 30, 276--278.
|
Wang, L., Xue, W., Zhang, H., Gao, R., Qiu, H., Wei, J., Zhou, L., Lei, Y.N., Wu, X., Li, X., et al., 2021. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat. Cell Biol. 23, 552-563.
|
Wang, X., Li, J., Wang, Y., Yang, B., Wei, J., Wu, J., Wang, R., Huang, X., Chen, J., and Yang, L., 2018. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946-949.
|
Wu, Y., Zeng, J., Roscoe, B.P., Liu, P., Yao, Q., Lazzarotto, C.R., Clement, K., Cole, M.A., Luk, K., Baricordi, C., et al., 2019. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776-783.
|
Xiang, G., Li, Y., Sun, J., Huo, Y., Cao, S., Cao, Y., Guo, Y., Yang, L., Cai, Y., Zhang, Y.E., et al., 2024. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors. Nat. Biotechnol. 42, 745-757.
|
Xie, S.Y., Li, W., Ren, Z.R., Huang, S.Z., Zeng, F., and Zeng, Y.T., 2011. Correction of β654-thalassaemia mice using direct intravenous injection of siRNA and antisense RNA vectors. Int. J. Hematol. 93, 301-310.
|
Xu, J., Bauer, D.E., Kerenyi, M.A., Vo, T.D., Hou, S., Hsu, Y.-J., Yao, H., Trowbridge, J.J., Mandel, G., and Orkin, S.H., 2013. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc. Natl. Acad. Sci. U. S. A. 110, 6518-6523.
|
Xu, J., Peng, C., Sankaran, V.G., Shao, Z., Esrick, E.B., Chong, B.G., Ippolito, G.C., Fujiwara, Y., Ebert, B.L., Tucker, P.W., et al., 2011. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 334, 993-996.
|
Xu, J., Shao, Z., Glass, K., Bauer, D.E., Pinello, L., Van Handel, B., Hou, S., Stamatoyannopoulos, J.A., Mikkola, H.K., Yuan, G.C., et al., 2012. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev. Cell 23, 796-811.
|
Xu, S., Luk, K., Yao, Q., Shen, A.H., Zeng, J., Wu, Y., Luo, H.Y., Brendel, C., Pinello, L., Chui, D.H.K., et al., 2019. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood 133, 2255-2262.
|
Ye, L., Wang, J., Tan, Y., Beyer, A.I., Xie, F., Muench, M.O., and Kan, Y.W., 2016. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and β-thalassemia. Proc. Natl. Acad. Sci. U. S. A. 113, 10661-10665.
|
Yeh, C.D., Richardson, C.D., and Corn, J.E., 2019. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468-1478.
|
Zeng, J., Wu, Y., Ren, C., Bonanno, J., Shen, A.H., Shea, D., Gehrke, J.M., Clement, K., Luk, K., Yao, Q., et al., 2020. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535-541.
|
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
|
Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E.M., Winblad, N., Choudhury, S.R., Abudayyeh, O.O., Gootenberg, J.S., et al., 2017. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31-34.
|
Zhang, X., Zhu, B., Chen, L., Xie, L., Yu, W., Wang, Y., Li, L., Yin, S., Yang, L., Hu, H., et al., 2020. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856-860.
|
Zhang, Y., Wu, Z.Y., 2024. Gene therapy for monogenic disorders: challenges, strategies, and perspectives. J. Genet. Genom. 51, 133-143.
|
Zhao, Q., Rank, G., Tan, Y.T., Li, H., Moritz, R.L., Simpson, R.J., Cerruti, L., Curtis, D.J., Patel, D.J., Allis, C.D., et al., 2009. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16, 304-311.
|
Zhou, C., Sun, Y., Yan, R., Liu, Y., Zuo, E., Gu, C., Han, L., Wei, Y., Hu, X., Zeng, R., et al., 2019. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275-278.
|
Zhou, D., Liu, K., Sun, C.W., Pawlik, K.M., and Townes, T.M., 2010. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat. Genet. 42, 742-744.
|
Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.L., and Gao, C., 2018. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950-953.
|
Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., and Yang, H., 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289-292.
|