8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

Gene therapy and gene editing strategies in inherited blood disorders

doi: 10.1016/j.jgg.2024.07.004
Funds:

This work was supported by Research Fund of Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital (30420230006), the National Natural Science Foundation of China (Nos. 82300142), and Sichuan Science and Technology Program (2022ZYD0131).

  • Received Date: 2024-04-30
  • Accepted Date: 2024-07-02
  • Rev Recd Date: 2024-07-01
  • Available Online: 2025-06-06
  • Publish Date: 2024-07-08
  • Gene therapy has shown significant potential in treating various diseases, particularly inherited blood disorders such as hemophilia, sickle cell disease, and thalassemia. Advances in understanding the regulatory network of disease-associated genes have led to the identification of additional therapeutic targets for treatment, especially for β-hemoglobinopathies. Erythroid regulatory factor BCL11A offers the most promising therapeutic target for β-hemoglobinopathies, and reduction of its expression using the commercialized gene therapy product Casgevy has been approved for use in the UK and USA in 2023. Notably, the emergence of innovative gene editing technologies has further broadened the gene therapy landscape, presenting possibilities for treatment. Intensive studies indicate that base editing and prime editing, built upon CRISPR technology, enable precise single-base modification in hematopoietic stem cells for addressing inherited blood disorders ex vivo and in vivo. In this review, we present an overview of the current landscape of gene therapies, focusing on clinical research and gene therapy products for inherited blood disorders, evaluation of potential gene targets, and the gene editing tools employed in current gene therapy practices, which provides an insight for the establishment of safer and more effective gene therapy methods for a wider range of diseases in the future.
  • loading
  • Altae-Tran, H., Kannan, S., Demircioglu, F.E., Oshiro, R., Nety, S.P., McKay, L.J., Dlakic, M., Inskeep, W.P., Makarova, K.S., Macrae, R.K., et al., 2021. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57-65.
    Antoniou, P., Hardouin, G., Martinucci, P., Frati, G., Felix, T., Chalumeau, A., Fontana, L., Martin, J., Masson, C., Brusson, M., et al., 2022. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nat. Commun. 13, 6618.
    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    Badon, I.W., Oh, Y., Kim, H.J., and Lee, S.H., 2024. Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Mol. Ther. 32, 32-43.
    Bao, X., Zhang, X., Wang, L., Wang, Z., Huang, J., Zhang, Q., Ye, Y., Liu, Y., Chen, D., Zuo, Y., et al., 2021. Epigenetic inactivation of ERF reactivates γ-globin expression in β-thalassemia. Am. J. Hum. Genet. 108, 709-721.
    Canver, M.C., Smith, E.C., Sher, F., Pinello, L., Sanjana, N.E., Shalem, O., Chen, D.D., Schupp, P.G., Vinjamur, D.S., Garcia, S.P., et al., 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192-197.
    Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., and Doudna, J.A., 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436-439.
    Chen, L., Zhu, B., Ru, G., Meng, H., Yan, Y., Hong, M., Zhang, D., Luan, C., Zhang, S., Wu, H., et al., 2023. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 41, 663-672.
    Chen, Y., Luo, X., Kang, R., Cui, K., Ou, J., Zhang, X., Liang, P., Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J. Genet. Genom. 2024 51:159-183.
    Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., and Voytas, D.F., 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761.
    Desai, M.A., Webb, H.D., Sinanan, L.M., Scarsdale, J.N., Walavalkar, N.M., Ginder, G.D., and Williams, D.C., Jr., 2015. An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex. Nucleic Acids Res. 43, 3100-3113.
    DeWitt, M.A., Magis, W., Bray, N.L., Wang, T., Berman, J.R., Urbinati, F., Heo, S.J., Mitros, T., Munoz, D.P., Boffelli, D., et al., 2016. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 8, 360ra134.
    Eaton, W.A., and Hofrichter, J., 1987. Hemoglobin S gelation and sickle cell disease. Blood 70, 1245-1266.
    Emambokus, N., Vegiopoulos, A., Harman, B., Jenkinson, E., Anderson, G., and Frampton, J., 2003. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 22, 4478-4488.
    Everette, K.A., Newby, G.A., Levine, R.M., Mayberry, K., Jang, Y., Mayuranathan, T., Nimmagadda, N., Dempsey, E., Li, Y., Bhoopalan, S.V., et al., 2023. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat. Biomed. Eng. 7, 616-628.
    Fang, Y., Cheng, Y., Lu, D., Gong, X., Yang, G., Gong, Z., Zhu, Y., Sang, X., Fan, S., Zhang, J., et al., 2018. Treatment of β(654) - thalassaemia by TALENs in a mouse model. Cell Prolif. 51, e12491.
    Feng, R., Mayuranathan, T., Huang, P., Doerfler, P.A., Li, Y., Yao, Y., Zhang, J., Palmer, L.E., Mayberry, K., Christakopoulos, G.E., et al., 2022. Activation of γ-globin expression by hypoxia-inducible factor 1α. Nature 610, 783-790.
    Fischer, K.D., and Nowock, J., 1990. The T-C substitution at -198 of the A gamma-globin gene associated with the British form of HPFH generates overlapping recognition sites for two DNA-binding proteins. Nucleic Acids Res. 18, 5685-5693.
    Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A., and Charpentier, E., 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517-521.
    Frangoul, H., Altshuler, D., Cappellini, M.D., Chen, Y.S., Domm, J., Eustace, B.K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., et al., 2021. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252-260.
    Friedmann, T., and Roblin, R., 1972. Gene therapy for human genetic disease? Science. 175, 949-955.
    Fu, B., Liao, J., Chen, S., Li, W., Wang, Q., Hu, J., Yang, F., Hsiao, S., Jiang, Y., Wang, L., et al., 2022. CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β(0)/β(0) transfusion-dependent β-thalassemia. Nat. Med. 28, 1573-1580.
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., and Liu, D.R., 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464-471.
    Gong, Y., Zhang, X., Zhang, Q., Zhang, Y., Ye, Y., Yu, W., Shao, C., Yan, T., Huang, J., Zhong, J., et al., 2021. A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia. Blood 137, 1652-1657.
    Guo, X., Plank-Bazinet, J., Krivega, I., Dale, R.K., and Dean, A., 2020. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res. 48, 10226-10240.
    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., and Taipale, J., 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927-930.
    Han, J.P., Kim, M., Choi, B.S., Lee, J.H., Lee, G.S., Jeong, M., Lee, Y., Kim, E.A., Oh, H.K., Go, N., et al., 2022. In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv. 8, eabj6901.
    Han, W., Qiu, H.Y., Sun, S., Fu, Z.C., Wang, G.Q., Qian, X., Wang, L., Zhai, X., Wei, J., Wang, Y., et al., 2023. Base editing of the HBG promoter induces potent fetal hemoglobin expression with no detectable off-target mutations in human HSCs. Cell Stem Cell 30, 1624-1639.
    Hoban, M.D., and Bauer, D.E., 2016. A genome editing primer for the hematologist. Blood 127, 2525-2535.
    Hoban, M.D., Cost, G.J., Mendel, M.C., Romero, Z., Kaufman, M.L., Joglekar, A.V., Ho, M., Lumaquin, D., Gray, D., Lill, G.R., et al., 2015. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125, 2597-2604.
    Hu, Z., Li, Z., Wu, Y., Zhao, J., Wu, L., Zhou, M., and Liang, D., 2022. Targeted B-domain deletion restores F8 function in human endothelial cells and mice. Signal Transduct. Target. Ther. 7, 189.
    Huang, P., Peslak, S.A., Lan, X., Khandros, E., Yano, J.A., Sharma, M., Keller, C.A., Giardine, B., Qin, K., Abdulmalik, O., et al., 2020. The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood 135, 2121-2132.
    Ivaldi, M.S., Diaz, L.F., Chakalova, L., Lee, J., Krivega, I., and Dean, A., 2018. Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood 132, 1963-1973.
    Jacob, G.F., and Raper, A.B., 1958. Hereditary persistence of fetal haemoglobin production, and its interaction with the sickle-cell trait. Br. J. Haematol. 4, 138-149.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    Ju, J., Wang, Y., Liu, R., Zhang, Y., Xu, Z., Wang, Y., Wu, Y., Liu, M., Cerruti, L., Zou, F., et al., 2014. Human fetal globin gene expression is regulated by LYAR. Nucleic Acids Res. 42, 9740-9752.
    Kalantri, S.A., Ray, R., Chattopadhyay, A., and Bhattacharyya, M., 2017. Decitabine as hemoglobin F inducer in hemoglobin E/β thalassemia. Blood 130, 2224-2224.
    Karvelis, T., Druteika, G., Bigelyte, G., Budre, K., Zedaveinyte, R., Silanskas, A., Kazlauskas, D., Venclovas, C., and Siksnys, V., 2021. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692-696.
    Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T., and Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376.
    Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., and Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843-846.
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
    Krivega, I., Byrnes, C., de Vasconcellos, J.F., Lee, Y.T., Kaushal, M., Dean, A., and Miller, J.L., 2015. Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping. Blood 126, 665-672.
    Lamsfus-Calle, A., Daniel-Moreno, A., Antony, J.S., Epting, T., Heumos, L., Baskaran, P., Admard, J., Casadei, N., Latifi, N., Siegmund, D.M., et al., 2020. Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34(CD34+) HSPCs by CRISPR/Cas9 for the induction of fetal hemoglobin. Sci. Rep. 10, 10133.
    Lan, X., Khandros, E., Huang, P., Peslak, S.A., Bhardwaj, S.K., Grevet, J.D., Abdulmalik, O., Wang, H., Keller, C.A., Giardine, B., et al., 2019. The E3 ligase adaptor molecule SPOP regulates fetal hemoglobin levels in adult erythroid cells. Blood Adv. 3, 1586-1597.
    Lan, X., Ren, R., Feng, R., Ly, L.C., Lan, Y., Zhang, Z., Aboreden, N., Qin, K., Horton, J.R., Grevet, J.D., et al., 2020. ZNF410 uniquely activates the NuRD component CHD4 to silence fetal hemoglobin expression. Mol. Cell 81, 239-254.
    Li, C., Georgakopoulou, A., Newby, G.A., Chen, P.J., Everette, K.A., Paschoudi, K., Vlachaki, E., Gil, S., Anderson, A.K., Koob, T., et al., 2023. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 141, 2085-2099.
    Liao, J., Chen, S., Hsiao, S., Jiang, Y., Yang, Y., Zhang, Y., Wang, X., Lai, Y., Bauer, D.E., and Wu, Y., 2023. Therapeutic adenine base editing of human hematopoietic stem cells. Nat. Commun. 14, 207.
    Liu, N., Hargreaves, V.V., Zhu, Q., Kurland, J.V., Hong, J., Kim, W., Sher, F., Macias-Trevino, C., Rogers, J.M., Kurita, R., et al., 2018. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430-442.
    Liu, N., Xu, S., Yao, Q., Zhu, Q., Kai, Y., Hsu, J.Y., Sakon, P., Pinello, L., Yuan, G.C., Bauer, D.E., et al., 2021. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat. Genet. 53, 511-520.
    Liu, R., Wang, L., Xu, H., Yin, X., Liang, J., Xie, W., Yang, G., Li, Y., Zhou, Y., Shi, L., et al., 2023. Safety and efficacy of RM-001 (autologous HBG1/2 promoter-modified CD34CD34+ hematopoietic stem and progenitor cells) in patients with transfusion-dependent β-thalassemia. Blood 142, 4994.
    Liu, R., Xu, H., Liang, J., Xie, W., Yang, G., Shi, L., Shi, L., Fang, J., Li, C., Shi, Z., et al., 2022. Preliminary result of the safety and efficacy of autologous HBG1/2 promoter-modified CD34CD34+ hematopoietic stem and progenitor cells (RM-001) in transfusion-dependent βeta-thalassemia. Blood 140, 4915-4916.
    Lu, D., Gong, X., Fang, Y., Guo, X., Chen, Y., Yang, F., Zhao, G., Ma, Q., Zeng, Y., and Zeng, F., 2022. Correction of RNA splicing defect in β (654)-thalassemia mice using CRISPR/Cas9 gene-editing technology. Haematologica. 107, 1427-1437.
    Lu, D.R., Zhou, J.M., Zheng, B., Qiu, X.F., Xue, J.L., Wang, J.M., Meng, P.L., Han, F.L., Ming, B.H., Wang, X.P., et al., 1993. Stage I clinical trial of gene therapy for hemophilia B. Sci. China B. 36, 1342-1351.
    Ma, Y., Liu, S., Gao, J., Chen, C., Zhang, X., Yuan, H., Chen, Z., Yin, X., Sun, C., Mao, Y., et al., 2021. Genome-wide analysis of pseudogenes reveals HBBP1's human-specific essentiality in erythropoiesis and implication in β-thalassemia. Dev. Cell 56, 478-493.
    Mantovani, R., 1999. The molecular biology of the CCAAT-binding factor NF-Y. Gene. 239, 15-27.
    Martyn, G.E., Wienert, B., Kurita, R., Nakamura, Y., Quinlan, K.G.R., and Crossley, M., 2019. A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site. Blood 133, 852-856.
    Martyn, G.E., Wienert, B., Yang, L., Shah, M., Norton, L.J., Burdach, J., Kurita, R., Nakamura, Y., Pearson, R.C.M., Funnell, A.P.W., et al., 2018. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat. Genet. 50, 498-503.
    Masuda, T., Wang, X., Maeda, M., Canver, M.C., Sher, F., Funnell, A.P., Fisher, C., Suciu, M., Martyn, G.E., Norton, L.J., et al., 2016. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 351, 285-289.
    Mayuranathan, T., Newby, G.A., Feng, R., Yao, Y., Mayberry, K.D., Lazzarotto, C.R., Li, Y., Levine, R.M., Nimmagadda, N., Dempsey, E., et al., 2023. Potent and uniform fetal hemoglobin induction via base editing. Nat. Genet. 55, 1210-1220.
    Molokie, R., Lavelle, D., Gowhari, M., Pacini, M., Krauz, L., Hassan, J., Ibanez, V., Ruiz, M.A., Ng, K.P., Woost, P., et al., 2017. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: a randomized phase 1 study. PLoS Med. 14, e1002382.
    Morgan, R.A., Gray, D., Lomova, A., and Kohn, D.B., 2017. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell 21, 574-590.
    Mucenski, M.L., McLain, K., Kier, A.B., Swerdlow, S.H., Schreiner, C.M., Miller, T.A., Pietryga, D.W., Scott, W.J., Jr., and Potter, S.S., 1991. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677-689.
    Mukai, H.Y., Motohashi, H., Ohneda, O., Suzuki, N., Nagano, M., and Yamamoto, M., 2006. Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation. Mol. Cell Biol. 26, 7953-7965.
    Nakagawa, R., Hirano, H., Omura, S.N., Nety, S., Kannan, S., Altae-Tran, H., Yao, X., Sakaguchi, Y., Ohira, T., Wu, W.Y., et al., 2023. Cryo-EM structure of the transposon-associated TnpB enzyme. Nature 616, 390-397.
    Newby, G.A., Yen, J.S., Woodard, K.J., Mayuranathan, T., Lazzarotto, C.R., Li, Y., Sheppard-Tillman, H., Porter, S.N., Yao, Y., Mayberry, K., et al., 2021. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295-302.
    Nualkaew, T., Khamphikham, P., Pongpaksupasin, P., Kaewsakulthong, W., Songdej, D., Paiboonsukwong, K., Sripichai, O., Engel, J.D., Hongeng, S., Fucharoen, S., et al., 2020. UNC0638 induces high levels of fetal hemoglobin expression in β-thalassemia/HbE erythroid progenitor cells. Ann. Hematol. 99, 2027-2036.
    Okam, M.M., Esrick, E.B., Mandell, E., Campigotto, F., Neuberg, D.S., and Ebert, B.L., 2015. Phase 1/2 trial of vorinostat in patients with sickle cell disease who have not benefitted from hydroxyurea. Blood 125, 3668-3669.
    Qin, K., Huang, P., Feng, R., Keller, C.A., Peslak, S.A., Khandros, E., Saari, M.S., Lan, X., Mayuranathan, T., Doerfler, P.A., et al., 2022. Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nat. Genet. 54, 874-884.
    Rank, G., Cerruti, L., Simpson, R.J., Moritz, R.L., Jane, S.M., and Zhao, Q., 2010. Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression. Blood 116, 1585-1592.
    Renneville, A., Van Galen, P., Canver, M.C., McConkey, M., Krill-Burger, J.M., Dorfman, D.M., Holson, E.B., Bernstein, B.E., Orkin, S.H., Bauer, D.E., et al., 2015. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood 126, 1930-1939.
    Roosjen, M., McColl, B., Kao, B., Gearing, L.J., Blewitt, M.E., and Vadolas, J., 2014. Transcriptional regulators Myb and BCL11A interplay with DNA methyltransferase 1 in developmental silencing of embryonic and fetal β-like globin genes. FASEB. J. 28, 1610-1620.
    Saito, M., Xu, P., Faure, G., Maguire, S., Kannan, S., Altae-Tran, H., Vo, S., Desimone, A., Macrae, R.K., and Zhang, F., 2023. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 620, 660-668.
    Sankaran, V.G., Menne, T.F., Xu, J., Akie, T.E., Lettre, G., Van Handel, B., Mikkola, H.K., Hirschhorn, J.N., Cantor, A.B., and Orkin, S.H., 2008. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839-1842.
    Sasnauskas, G., Tamulaitiene, G., Druteika, G., Carabias, A., Silanskas, A., Kazlauskas, D., Venclovas, C., Montoya, G., Karvelis, T., and Siksnys, V., 2023. TnpB structure reveals minimal functional core of Cas12 nuclease family. Nature 616, 384-389.
    Sher, F., Hossain, M., Seruggia, D., Schoonenberg, V.A.C., Yao, Q., Cifani, P., Dassama, L.M.K., Cole, M.A., Ren, C., Vinjamur, D.S., et al., 2019. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat. Genet. 51, 1149-1159.
    Shi, L., Cui, S., Engel, J.D., and Tanabe, O., 2013. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat. Med. 19, 291-294.
    Sousa, P., Janoudi, T., deDreuzy, E., Shearman, M.S., Zhang, K., and Chang, K.-H., 2021. Preclinical development of EDIT301, an autologous cell therapy comprising AsCas12a-RNP modified mobilized peripheral blood-CD34CD34+ cells for the potential treatment of transfusion dependent beta thalassemia. Blood 138, 1858.
    Stoming, T.A., Stoming, G.S., Lanclos, K.D., Fei, Y.J., Altay, C., Kutlar, F., and Huisman, T.H., 1989. An A gamma type of nondeletional hereditary persistence of fetal hemoglobin with a T--C mutation at position -175 to the cap site of the A gamma globin gene. Blood 73, 329-333.
    Swarts, D.C., van der Oost, J., and Jinek, M., 2017. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221-233.
    Thein, S.L., 2018. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol. Dis. 70, 54-65.
    Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V.G., Chen, W., Usala, G., Busonero, F., Maschio, A., Albai, G., et al., 2008. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. U. S. A. 105, 1620-1625.
    Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D., 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636-646.
    Wahlberg, K., Jiang, J., Rooks, H., Jawaid, K., Matsuda, F., Yamaguchi, M., Lathrop, M., Thein, S.L., and Best, S., 2009. The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells. Blood 114, 1254-1262.
    Wang, J., Hevi, S., Kurash, J.K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., Xu, G., et al., 2009. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat. Genet. 41, 125-129.
    Wang, L., Li, L., Ma, Y., Hu, H., Li, Q., Yang, Y., Liu, W., Yin, S., Li, W., Fu, B., et al., 2020. Reactivation of γ-globin expression through Cas9 or base editor to treat β-hemoglobinopathies. Cell Res. 30, 276--278.
    Wang, L., Xue, W., Zhang, H., Gao, R., Qiu, H., Wei, J., Zhou, L., Lei, Y.N., Wu, X., Li, X., et al., 2021. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nat. Cell Biol. 23, 552-563.
    Wang, X., Li, J., Wang, Y., Yang, B., Wei, J., Wu, J., Wang, R., Huang, X., Chen, J., and Yang, L., 2018. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946-949.
    Wu, Y., Zeng, J., Roscoe, B.P., Liu, P., Yao, Q., Lazzarotto, C.R., Clement, K., Cole, M.A., Luk, K., Baricordi, C., et al., 2019. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat. Med. 25, 776-783.
    Xiang, G., Li, Y., Sun, J., Huo, Y., Cao, S., Cao, Y., Guo, Y., Yang, L., Cai, Y., Zhang, Y.E., et al., 2024. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors. Nat. Biotechnol. 42, 745-757.
    Xie, S.Y., Li, W., Ren, Z.R., Huang, S.Z., Zeng, F., and Zeng, Y.T., 2011. Correction of β654-thalassaemia mice using direct intravenous injection of siRNA and antisense RNA vectors. Int. J. Hematol. 93, 301-310.
    Xu, J., Bauer, D.E., Kerenyi, M.A., Vo, T.D., Hou, S., Hsu, Y.-J., Yao, H., Trowbridge, J.J., Mandel, G., and Orkin, S.H., 2013. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc. Natl. Acad. Sci. U. S. A. 110, 6518-6523.
    Xu, J., Peng, C., Sankaran, V.G., Shao, Z., Esrick, E.B., Chong, B.G., Ippolito, G.C., Fujiwara, Y., Ebert, B.L., Tucker, P.W., et al., 2011. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 334, 993-996.
    Xu, J., Shao, Z., Glass, K., Bauer, D.E., Pinello, L., Van Handel, B., Hou, S., Stamatoyannopoulos, J.A., Mikkola, H.K., Yuan, G.C., et al., 2012. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev. Cell 23, 796-811.
    Xu, S., Luk, K., Yao, Q., Shen, A.H., Zeng, J., Wu, Y., Luo, H.Y., Brendel, C., Pinello, L., Chui, D.H.K., et al., 2019. Editing aberrant splice sites efficiently restores β-globin expression in β-thalassemia. Blood 133, 2255-2262.
    Ye, L., Wang, J., Tan, Y., Beyer, A.I., Xie, F., Muench, M.O., and Kan, Y.W., 2016. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and β-thalassemia. Proc. Natl. Acad. Sci. U. S. A. 113, 10661-10665.
    Yeh, C.D., Richardson, C.D., and Corn, J.E., 2019. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 21, 1468-1478.
    Zeng, J., Wu, Y., Ren, C., Bonanno, J., Shen, A.H., Shea, D., Gehrke, J.M., Clement, K., Luk, K., Yao, Q., et al., 2020. Therapeutic base editing of human hematopoietic stem cells. Nat. Med. 26, 535-541.
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
    Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E.M., Winblad, N., Choudhury, S.R., Abudayyeh, O.O., Gootenberg, J.S., et al., 2017. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31-34.
    Zhang, X., Zhu, B., Chen, L., Xie, L., Yu, W., Wang, Y., Li, L., Yin, S., Yang, L., Hu, H., et al., 2020. Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat. Biotechnol. 38, 856-860.
    Zhang, Y., Wu, Z.Y., 2024. Gene therapy for monogenic disorders: challenges, strategies, and perspectives. J. Genet. Genom. 51, 133-143.
    Zhao, Q., Rank, G., Tan, Y.T., Li, H., Moritz, R.L., Simpson, R.J., Cerruti, L., Curtis, D.J., Patel, D.J., Allis, C.D., et al., 2009. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16, 304-311.
    Zhou, C., Sun, Y., Yan, R., Liu, Y., Zuo, E., Gu, C., Han, L., Wei, Y., Hu, X., Zeng, R., et al., 2019. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275-278.
    Zhou, D., Liu, K., Sun, C.W., Pawlik, K.M., and Townes, T.M., 2010. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat. Genet. 42, 742-744.
    Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.L., and Gao, C., 2018. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950-953.
    Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., and Yang, H., 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return