Aalto, A., Olguin-Olguin, A., Raz, E., 2021. Zebrafish primordial germ cell migration. Front. Cell Dev. Biol. 9, 684460.
|
Adashev, V.E., Kotov, A.A., Olenina, L.V., 2023. RNA helicase Vasa as a multifunctional conservative regulator of gametogenesis in eukaryotes. Curr. Issues Mol. Biol. 45, 5677-5705.
|
Aguero, T., Kassmer, S., Alberio, R., Johnson, A., King, M.L., 2017a. Mechanisms of vertebrate germ cell determination. Adv. Exp. Med. Biol. 953, 383-440.
|
Aguero, T., Jin, Z., Chorghade, S., Kalsotra, A., King, M.L., Yang, J., 2017b. Maternal Dead-end 1 promotes translation of nanos1 by binding the eIF3 complex. Development 144, 3755-3765.
|
Aguero, T., Jin, Z., Owens, D., Malhotra, A., Newman, K., Yang, J., King, M.L., 2018. Combined functions of two RRMs in Dead-end1 mimic helicase activity to promote nanos1 translation in the germline. Mol. Reprod. Dev. 85, 896-908.
|
Aharon, D., Marlow, F.L., 2021. Sexual determination in zebrafish. Cell. Mol. Life Sci. 79, 8.
|
Albarqi, M.M.Y., Ryder, S.P., 2023. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front. Cell Dev. Biol. 10, 1094295.
|
Arkov, A.L., Ramos, A., 2010. Building RNA-protein granules: insight from the germline. Trends Cell Biol. 20, 482-490.
|
Bateman, M.J., Cornell, R., d'Alencon, C., Sandra, A., 2004. Expression of the zebrafish Staufen gene in the embryo and adult. Gene Expr. Patterns 5, 273-278.
|
Beer, R.L., Draper, B.W., 2013. nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Dev. Biol. 374, 308-318.
|
Bertho, S., Clapp, M., Banisch, T.U., Bandemer, J., Raz, E., Marlow, F.L., 2021. Zebrafish dazl regulates cystogenesis and germline stem cell specification during the primordial germ cell to germline stem cell transition. Development 148, dev187773.
|
Boke, E., Ruer, M., Wuhr, M., Coughlin, M., Lemaitre, R., Gygi, S.P., Alberti, S., Drechsel, D., Hyman, A.A., Mitchison, T.J., 2016. Amyloid-like self-assembly of a cellular compartment. Cell 166, 637-650.
|
Bontems, F., Stein, A., Marlow, F., Lyautey, J., Gupta, T., Mullins, M.C., Dosch, R., 2009. Bucky ball organizes germ plasm assembly in zebrafish. Curr. Biol. 19, 414-422.
|
Braat, A.K., Zandbergen, T., van de Water, S., Goos, H.J., Zivkovic, D., 1999. Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev. Dyn. 216, 153-167.
|
Braat, A.K., van de Water, S., Goos, H., Bogerd, J., Zivkovic, D., 2000. Vasa protein expression and localization in the zebrafish. Mech. Dev. 95, 271-274.
|
Braat, A.K., van de Water, S., Korving, J., Zivkovic, D., 2001. A zebrafish vasa morphant abolishes Vasa protein but does not affect the establishment of the germline. Genesis 30, 183-185.
|
Cao, Z., Mao, X., Luo, L., 2019. Germline stem cells drive ovary regeneration in zebrafish. Cell Rep. 26, 1709-1717.e3.
|
Campbell, P.D., Heim, A.E., Smith, M.Z., Marlow, F.L., 2015. Kinesin-1 interacts with Bucky ball to form germ cells and is required to pattern the zebrafish body axis. Development 142, 2996-3008.
|
Carrera, P., Johnstone, O., Nakamura, A., Casanova, J., Jackle, H., Lasko, P., 2000. VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol. Cell 5, 181-187.
|
Chiappetta, A., Liao, J., Tian, S., Trcek, T., 2022. Structural and functional organization of germ plasm condensates. Biochem. J. 479, 2477-2495.
|
Chuma, S., Nakano, T., 2013. piRNA and spermatogenesis in mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110338.
|
Collier, B., Gorgoni, B., Loveridge, C., Cooke, H.J., Gray, N.K., 2005. The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J. 24, 2656-2666.
|
Dai, X., Shu, Y., Lou, Q., Tian, Q., Zhai, G., Song, J., Lu, S., Yu, H., He, J., Yin, Z., 2017. Tdrd12 is essential for germ cell development and maintenance in zebrafish. Int. J. Mol. Sci. 18, 1127.
|
Dai, X., Cheng, X., Huang, J., Gao, Y., Wang, D., Feng, Z., Zhai, G., Lou, Q., He, J., Wang, Z., et al., 2021. Rbm46, a novel germ cell-specific factor, modulates meiotic progression and spermatogenesis. Biol. Reprod. 104, 1139-1153.
|
De Keuckelaere, E., Hulpiau, P., Saeys, Y., Berx, G., van Roy, F., 2018. Nanos genes and their role in development and beyond. Cell. Mol. Life Sci. 75, 1929-1946.
|
Dosch R., 2015. Next generation mothers: maternal control of germline development in zebrafish. Crit. Rev. Biochem. Mol. Biol. 50, 54-68.
|
Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., Esguerra, C.V., Leung, T., Raz, E., 2002. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111, 647-659.
|
D'Orazio, F.M., Balwierz, P.J., Gonzalez, A.J., Guo, Y., Hernandez-Rodriguez, B., Wheatley, L., Jasiulewicz, A., Hadzhiev, Y., Vaquerizas, J.M., Cairns, B., et al., 2021. Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization. Dev. Cell 56, 641-656.e5.
|
Draper, B.W., McCallum, C.M., Moens, C.B., 2007. nanos1 is required to maintain oocyte production in adult zebrafish. Dev. Biol. 305, 589-598.
|
Eno, C., Solanki, B., Pelegri, F., 2016. Aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 143, 1585-1599.
|
Eno, C., Pelegri, F., 2018. Modulation of F-actin dynamics by maternal Mid1ip1L controls germ plasm aggregation and furrow recruitment in the zebrafish embryo. Development 145, dev156596.
|
Escobar-Aguirre, M., Elkouby, Y.M., Mullins, M.C., 2017. Localization in oogenesis of maternal regulators of embryonic development. Adv. Exp. Med. Biol. 953, 173-207.
|
Fu, X.F., Cheng, S.F., Wang, L.Q., Yin, S., De Felici, M., Shen, W., 2015. DAZ family proteins, key players for germ cell development. Int. J. Biol. Sci. 11, 1226-1235.
|
Goudarzi, M., Banisch, T.U., Mobin, M.B., Maghelli, N., Tarbashevich, K., Strate, I., van den Berg, J., Blaser, H., Bandemer, S., Paluch, E., et al., 2012. Identification and regulation of a molecular module for bleb-based cell motility. Dev. Cell 23, 210-218.
|
Gross-Thebing, T., Yigit, S., Pfeiffer, J., Reichman-Fried, M., Bandemer, J., Ruckert, C., Rathmer, C., Goudarzi, M., Stehling, M., Tarbashevich, K., et al., 2017. The vertebrate protein dead end maintains primordial germ cell fate by inhibiting somatic differentiation. Dev. Cell 43, 704-715.e5.
|
Gross-Thebing, T., Raz, E., 2020. Dead end and detour: the function of the RNA-binding protein Dnd in posttranscriptional regulation in the germline. Curr. Top. Dev. Biol. 140, 181-208.
|
Gustafson, E.A., Wessel, G.M., 2010. Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays 32, 626-637.
|
Hanazawa, M., Yonetani, M., Sugimoto, A., 2011. PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans. J. Cell Biol. 192, 929-937.
|
Hansen, C.L., Pelegri, F., 2021. Primordial germ cell specification in vertebrate embryos: phylogenetic distribution and conserved molecular features of preformation and induction. Front. Cell Dev. Biol. 9, 730332.
|
Hartung, O., Forbes, M.M., Marlow, F.L., 2014. Zebrafish vasa is required for germ-cell differentiation and maintenance. Mol. Reprod. Dev. 81, 946-961.
|
Hashimoto, Y., Maegawa, S., Nagai, T., Yamaha, E., Suzuki, H., Yasuda, K., Inoue, K., 2004. Localized maternal factors are required for zebrafish germ cell formation. Dev. Biol. 268, 152-161.
|
Heim, A.E., Hartung, O., Rothhamel, S., Ferreira, E., Jenny, A., Marlow, F.L., 2014. Oocyte polarity requires a Bucky ball-dependent feedback amplification loop. Development 141, 842-854.
|
Houston, D.W., King, M.L., 2000. Germ plasm and molecular determinants of germ cell fate. Curr. Top. Dev. Biol. 50, 155-181.
|
Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, H., Filippov, D.V., Blaser, H., Raz, E., Moens, C.B., et al., 2007. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69-82.
|
Houwing, S., Berezikov, E., Ketting, R.F., 2008. Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J. 27, 2702-2711.
|
Huang, H.Y., Houwing, S., Kaaij, L.J., Meppelink, A., Redl, S., Gauci, S., Vos, H., Draper, B.W., Moens, C.B., Burgering, B.M., et al., 2011. Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO J. 30, 3298-3308.
|
Inoue, H., Sakurai, T., Hasegawa, K., Suzuki, A., Saga, Y., 2022. NANOS3 suppresses premature spermatogonial differentiation to expand progenitors and fine-tunes spermatogenesis in mice. Biol. Open 11, bio059146.
|
Islam, K.N., Ajao, A., Venkataramani, K., Rivera, J., Pathania, S., Henke, K., Siegfried, K.R., 2023. The RNA-binding protein Adad1 is necessary for germ cell maintenance and meiosis in zebrafish. PLoS Genet. 19, e1010589.
|
Jamieson-Lucy, A., Mullins, M.C., 2019. The vertebrate Balbiani body, germ plasm, and oocyte polarity. Curr. Top. Dev. Biol. 135, 1-34.
|
Jamieson-Lucy, A.H., Kobayashi, M., James Aykit, Y., Elkouby, Y.M., Escobar-Aguirre, M., Vejnar, C.E., Giraldez, A.J., Mullins, M.C., 2022. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Dev. Biol. 484, 1-11.
|
Juliano, C., Wang, J., Lin, H., 2011. Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu. Rev. Genet. 45, 447-469.
|
Kaufman, O.H., Lee, K., Martin, M., Rothhamel, S., Marlow, F.L., 2018. rbpms2 functions in Balbiani body architecture and ovary fate. PLoS Genet. 14, e1007489.
|
Kedde, M., Strasser, M.J., Boldajipour, B., Oude Vrielink, J.A., Slanchev, K., le Sage, C., Nagel, R., Voorhoeve, P.M., van Duijse, J., OErom, U.A., et al., 2007. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273-1286.
|
Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., Nusslein-Volhard, C., 2000. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Biol. 149, 875-888.
|
Kobayashi, T., Surani, M.A., 2018. On the origin of the human germline. Development 145, dev150433.
|
Kobayashi, T., Zhang, H., Tang, W.W.C., Irie, N., Withey, S., Klisch, D., Sybirna, A., Dietmann, S., Contreras, D.A., Webb, R., 2017. Principles of early human development and germ cell program from conserved model systems. Nature 546, 416-420.
|
Kontur, C., Jeong, M., Cifuentes, D., Giraldez, A.J., 2020. Ythdf m6A readers function redundantly during zebrafish development. Cell Rep. 33, 108598.
|
Koprunner, M., Thisse, C., Thisse, B., Raz, E., 2001. A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev. 15, 2877-2885.
|
Kosaka, K., Kawakami, K., Sakamoto, H., Inoue, K., 2007. Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Mech. Dev. 124, 279-289.
|
Kotani, T., Yasuda, K., Ota, R., Yamashita, M., 2013. Cyclin B1 mRNA translation is temporally controlled through formation and disassembly of RNA granules. J. Cell Biol. 202, 1041-1055.
|
Krishnakumar, P., Riemer, S., Perera, R., Lingner, T., Goloborodko, A., Khalifa, H., Bontems, F., Kaufholz, F., El-Brolosy, M.A., Dosch, R., 2018. Functional equivalence of germ plasm organizers. PLoS Genet. 14, e1007696.
|
Kuo, M.W., Wang, S.H., Chang, J.C., Chang, C.H., Huang, L.J., Lin, H.H., Yu, A.L., Li, W.H., Yu, J., 2009. A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells. PLoS One 4, e4980.
|
Lai, F., King, M.L., 2013. Repressive translational control in germ cells. Mol. Reprod. Dev. 80, 665-676.
|
Lehmann, R., 2012. Germline stem cells: origin and destiny. Cell Stem Cell 10, 729-739.
|
Lehmann R., 2016. Germ plasm biogenesis - an Oskar-centric perspective. Curr. Top. Dev. Biol. 116, 679-707.
|
Li, M., Rong, X., Lu, L., Li, Y., Yao, K., Ge, W., Duan, C., 2021. IGF-2 mRNA binding protein 2 regulates primordial germ cell development in zebrafish. Gen. Comp. Endocrinol. 313, 113875.
|
Li, L., Krasnykov, K., Homolka, D., Gos, P., Mendel, M., Fish, R.J., Pandey, R.R., Pillai, R.S., 2022. The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition. Mol. Cell 82, 1678-1690.e12.
|
Liu, W., Collodi, P., 2010. Zebrafish dead end possesses ATPase activity that is required for primordial germ cell development. FASEB J. 24, 2641-2650.
|
Maegawa, S., Yamashita, M., Yasuda, K., Inoue, K., 2002. Zebrafish DAZ-like protein controls translation via the sequence ‘GUUC’. Gene Cell. 7, 971-984.
|
Magnusdottir, E., Surani, M.A., 2014. How to make a primordial germ cell. Development 141, 245-252.
|
Mercer, M., Jang, S., Ni, C., Buszczak, M., 2021. The dynamic regulation of mRNA translation and ribosome biogenesis during germ cell development and reproductive aging. Front. Cell Dev. Biol. 9, 710186.
|
Miao, L., Yuan, Y., Cheng, F., Fang, J., Zhou, F., Ma, W., Jiang, Y., Huang, X., Wang, Y., Shan, L., et al., 2017. Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish. Development 144, 128-138.
|
Mickoleit, M., Banisch, T.U., Raz, E., 2011. Regulation of hub mRNA stability and translation by miR430 and the dead end protein promotes preferential expression in zebrafish primordial germ cells. Dev. Dyn. 240, 695-703.
|
Mikedis, M.M., Fan, Y., Nicholls, P.K., Endo, T., Jackson, E.K., Cobb, S.A., de Rooij, D.G., Page, D.C., 2020. DAZL mediates a broad translational program regulating expansion and differentiation of spermatogonial progenitors. Elife 9, e56523.
|
Mishima, Y., Giraldez, A.J., Takeda, Y., Fujiwara, T., Sakamoto, H., Schier, A.F., Inoue, K., 2006. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 16, 2135-2142.
|
Moravec, C.E., Pelegri, F., 2020. The role of the cytoskeleton in germ plasm aggregation and compaction in the zebrafish embryo. Curr. Top. Dev. Biol. 140, 145-179.
|
Nguyen-Chi, M., Morello, D., 2011. RNA-binding proteins, RNA granules, and gametes: is unity strength? Reproduction 142, 803-817.
|
Ohinata, Y., Ohta, H., Shigeta, M., Yamanaka, K., Wakayama, T., Saitou, M., 2009. A signaling principle for the specification of the germ cell lineage in mice. Cell 137, 571-584.
|
Olsen, L.C., Aasland, R., Fjose, A., 1997. A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66, 95-105.
|
Oosterhuis, J.W., Looijenga, L.H.J., 2019. Human germ cell tumours from a developmental perspective. Nat. Rev. Cancer 19, 522-537.
|
Pek, J.W., Anand, A., Kai, T., 2012. Tudor domain proteins in development. Development 139, 2255-2266.
|
Perera, R.P., Shaikhqasem, A., Rostam, N., Dickmanns, A., Ficner, R., Tittmann, K., Dosch, R., 2021. Bucky ball is a novel zebrafish Vasa ATPase activator. Biomolecules 11, 1507.
|
Ramasamy, S., Wang, H., Quach, H.N., Sampath, K., 2006. Zebrafish Staufen1 and Staufen2 are required for the survival and migration of primordial germ cells. Dev. Biol. 292, 393-406.
|
Ramat, A., Simonelig, M., 2021. Functions of PIWI proteins in gene regulation: new arrows added to the piRNA Quiver. Trends Genet. 37, 188-200.
|
Raz, E., 2000. The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 1, REVIEWS1017.
|
Ren, F., Miao, R., Xiao, R., Mei, J., 2021. m6A reader Igf2bp3 enables germ plasm assembly by m6A-dependent regulation of gene expression in zebrafish. Sci. Bull. 66, 1119-1128.
|
Romano, S., Kaufman, O.H., Marlow, F.L., 2020. Loss of dmrt1 restores zebrafish female fates in the absence of cyp19a1a but not rbpms2a/b. Development 147, dev190942.
|
Roovers, E.F., Kaaij, L.J.T., Redl, S., Bronkhorst, A.W., Wiebrands, K., de Jesus Domingues, A.M., Huang, H.Y., Han, C.T., Riemer, S., Dosch, R., et al., 2018. Tdrd6a regulates the aggregation of Buc into functional subcellular compartments that drive germ cell specification. Dev. Cell 46, 285-301.e9.
|
Rostam, N., Goloborodko, A., Riemer, S., Hertel, A., Riedel, D., Vorbruggen, G., Dosch, R., 2022. The germ plasm is anchored at the cleavage furrows through interaction with tight junctions in the early zebrafish embryo. Development 149, dev200465.
|
Saitoh, A., Takada, Y., Horie, M., Kotani, T., 2018. Pumilio1 phosphorylation precedes translational activation of its target mRNA in zebrafish oocytes. Zygote 26, 372-380.
|
Sanchez, A., Amatruda, J.F., 2016. Zebrafish germ cell tumors. Adv. Exp. Med. Biol. 916, 479-494.
|
Schisa, J.A., Elaswad, M.T., 2021. An emerging role for post-translational modifications in regulating RNP condensates in the germ line. Front. Mol. Biosci. 8, 658020.
|
Shi, D.L., Grifone, R., 2021. RNA-binding proteins in the post-transcriptional control of skeletal muscle development, regeneration and disease. Front. Cell Dev. Biol. 9, 738978.
|
Shi, D.L., 2022. Circumventing zygotic lethality to generate maternal mutants in zebrafish. Biology 11, 102.
|
Shi, H., Wang, X., Lu, Z., Zhao, B.S., Ma, H., Hsu, P.J., Liu, C., He, C., 2017. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315-328.
|
Siegfried, K.R., Nusslein-Volhard, C., 2008. Germ line control of female sex determination in zebrafish. Dev. Biol. 324, 277-287.
|
Slanchev, K., Stebler, J., de la Cueva-Mendez, G., Raz, E., 2005. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc. Natl. Acad. Sci. U. S. A. 102, 4074-4079.
|
Strasser, M.J., Mackenzie, N.C., Dumstrei, K., Nakkrasae, L.I., Stebler, J., Raz, E., 2008. Control over the morphology and segregation of zebrafish germ cell granules during embryonic development. BMC Dev. Biol. 8, 58.
|
Strome, S., Updike, D., 2015. Specifying and protecting germ cell fate. Nat. Rev. Mol. Cell Biol. 16, 406-416.
|
Styhler, S., Nakamura, A., Swan, A., Suter, B., Lasko, P., 1998. Vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125, 1569-1578.
|
Sun, J., Yan, L., Shen, W., Meng, A., 2018. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 145, dev166587.
|
Suzuki, H., Tsuda, M., Kiso, M., Saga, Y., 2008. Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and -independent apoptotic pathways. Dev. Biol. 318, 133-142.
|
Takeda, Y., Mishima, Y., Fujiwara, T., Sakamoto, H., Inoue, K., 2009. DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. PLoS One 4, e7513.
|
Tanaka, S.S., Toyooka, Y., Akasu, R., Katoh-Fukui, Y., Nakahara, Y., Suzuki, R., Yokoyama, M., Noce, T., 2000. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14, 841-853.
|
Tang, W.W., Dietmann, S., Irie, N., Leitch, H.G., Floros, VI., Bradshaw, C.R., Hackett, J.A., Chinnery, P.F., Surani, M.A., 2015. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453-1467.
|
Thisse, B., Thisse, C., 2004. Fast release clones: a high throughput expression analysis. ZFIN direct data submission, http://zfin.org.
|
Thomas, L., Putnam, A., Folkmann, A., 2023. Germ granules in development. Development 150, dev201037.
|
Thomson, T., Lasko, P., 2005. Tudor and its domains: germ cell formation from a Tudor perspective. Cell Res. 15, 281-291.
|
Tsuda, M., Sasaoka, Y., Kiso, M., Abe, K., Haraguchi, S., Kobayashi, S., Saga, Y., 2003. Conserved role of Nanos proteins in germ cell development. Science 301, 1239-1241.
|
Vong, Y.H., Sivashanmugam, L., Leech, R., Zaucker, A., Jones, A., Sampath, K., 2021. The RNA-binding protein Igf2bp3 is critical for embryonic and germline development in zebrafish. PLoS Genet. 17, e1009667.
|
Wang, C., Lin, H., 2021. Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs. Genome Biol. 22, 27.
|
Wang, X., Zhu, J., Wang, H., Deng, W., Jiao, S., Wang, Y., He, M., Zhang, F., Liu, T., Hao Y., et al., 2023a. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat. Commun. 14, 7918.
|
Wang, X., Ramat, A., Simonelig, M., Liu, M.F., 2023b. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol. 24, 123-141.
|
Weidinger, G., Wolke, U., Koprunner, M., Klinger, M., Raz, E., 1999. Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Development 126, 5295-5307.
|
Weidinger, G., Stebler, J., Slanchev, K., Dumstrei, K., Wise, C., Lovell-Badge, R., Thisse, C., Thisse, B., Raz, E., 2003. Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr. Biol. 13, 1429-1434.
|
Westerich, K.J., Tarbashevich, K., Schick, J., Gupta, A., Zhu, M., Hull, K., Romo, D., Zeuschner, D., Goudarzi, M., Gross-Thebing, T., et al., 2023. Spatial organization and function of RNA molecules within phase-separated condensates in zebrafish are controlled by Dnd1. Dev. Cell 58, 1578-1592.e5.
|
Williamson A, Lehmann R., 1996. Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol. 12, 365-391.
|
Wilson, M.L., Romano, S.N., Khatri, N., Aharon, D., Liu, Y., Kaufman, O.H., Draper, B.W., Marlow, F.L., 2024. Rbpms2 promotes female fate upstream of the nutrient sensing Gator2 complex component, Mios. Nat. Commun. 15, 5248.
|
Wiszniak, S.E., Dredge, B.K., Jensen, K.B., 2011. HuB (elavl2) mRNA is restricted to the germ cells by post-transcriptional mechanisms including stabilisation of the message by DAZL. PLoS One 6, e20773.
|
Wolke, U., Weidinger, G., Koprunner, M., Raz, E., 2002. Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr. Biol. 12, 289-294.
|
Xu, C., Cao, Y., Bao, J., 2021. Building RNA-protein germ granules: insights from the multifaceted functions of DEAD-box helicase Vasa/Ddx4 in germline development. Cell. Mol. Life Sci. 79, 4.
|
Yamaji, M., Jishage, M., Meyer, C., Suryawanshi, H., Der, E., Yamaji, M., Garzia, A., Morozov, P., Manickavel, S., McFarland, H.L., et al., 2017. DND1 maintains germline stem cells via recruitment of the CCR4-NOT complex to target mRNAs. Nature 543, 568-572.
|
Yang, C.R., Rajkovic, G., Daldello, E.M., Luong, X.G., Chen, J., Conti, M., 2020. The RNA-binding protein DAZL functions as repressor and activator of mRNA translation during oocyte maturation. Nat. Commun. 11, 1399.
|
Yoon, C., Kawakami, K., Hopkins, N., 1997. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124, 3157-3165.
|
Zhang, Q., Yaniv, K., Oberman, F., Wolke, U., Git, A., Fromer, M., Taylor, W.L., Meyer, D., Standart, N., Raz, E., et al., 1999. Vg1 RBP intracellular distribution and evolutionarily conserved expression at multiple stages during development. Mech. Dev. 88, 101-106.
|
Zhang, C., Lu, T., Zhang, Y., Li, J., Tarique, I., Wen, F., Chen, A., Wang, J., Zhang, Z., Zhang, Y., et al., 2021. Rapid generation of maternal mutants via oocyte transgenic expression of CRISPR-Cas9 and sgRNAs in zebrafish. Sci. Adv. 7, eabg4243.
|