8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

Population-scale variability of the human UDP-glycosyltransferase gene family

doi: 10.1016/j.jgg.2024.06.018
Funds:

The authors received support from the Swedish Research Council (grant numbers 2021-02801 and 2023-03015), Cancerfonden (grant 23-0763 PT), by the SciLifeLab and Wallenberg National Program for Data-Driven Life Science (grant WASPDDLS22:006), the Robert Bosch Foundation, Stuttgart, Germany and from the National Autonomous University of Mexico (UNAM) DGECI program Initiation to Research 2023. MDC is supported in part by the South African Medical Research Council (SAMRC) with funds received from Novartis and GSK R&D for Project Africa GRADIENT (RCA# 3000038516).

  • Received Date: 2024-05-12
  • Accepted Date: 2024-06-26
  • Rev Recd Date: 2024-06-10
  • Available Online: 2025-06-06
  • Publish Date: 2024-07-04
  • Human UDP-glycosyltransferases (UGTs) are responsible for the glycosylation of a wide variety of endogenous substrates and commonly prescribed drugs. Different genetic polymorphisms in UGT genes are implicated in interindividual differences in drug response and cancer risk. However, the genetic complexity beyond these variants has not been comprehensively assessed. We here leveraged whole-exome and whole-genome sequencing data from 141,456 unrelated individuals across 7 major human populations to provide a comprehensive profile of genetic variability across the human UGT gene family. Overall, 9666 exonic variants were observed, of which 98.9% were rare. To interpret the functional impact of UGT missense variants, we developed a gene family-specific variant effect predictor. This algorithm identified a total of 1208 deleterious variants, most of which were found in African and South Asian populations. Structural analysis corroborated the predicted effects for multiple variations in substrate binding sites. Combined, our analyses provide a systematic overview of UGT variability, which can yield insights into interindividual differences in phase 2 metabolism and facilitate the translation of sequencing data into personalized predictions of UGT substrate disposition.
  • loading
  • Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., Sunyaev, S.R., 2010. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248-249.
    Akaba, K., Kimura, T., Sasaki, A., Tanabe, S., Ikegami, T., Hashimoto, M., Umeda, H., Yoshida, H., Umetsu, K., Chiba, H., Yuasa, I., Hayasaka, K., 1998. Neonatal hyperbilirubinemia and mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene: a common missense mutation among Japanese, Koreans and Chinese. IUBMB Life 46, 21-26.
    Alirezaie, N., Kernohan, K.D., Hartley, T., Majewski, J., Hocking, T.D., 2018. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants. Am. J. Hum. Genet. 103, 474-483.
    Aminkeng, F., Ross, C.J.D., Rassekh, S.R., Hwang, S., Rieder, M.J., Bhavsar, A.P., Smith, A., Sanatani, S., Gelmon, K.A., Bernstein, D., Hayden, M.R., Amstutz, U., Carleton, B.C., Group, C.C.P.R., 2016. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 82, 683-695.
    Barbarino, J.M., Haidar, C.E., Klein, T.E., Altman, R.B., 2014. PharmGKB summary: very important pharmacogene information for UGT1A1. Pharmacogenet. Genomics 24, 177-183.
    Beutler, E., Gelbart, T., Demina, A., 1998. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc. Natl. Acad. Sci. USA 95, 8170-8174.
    Camara, M.D., Zhou, Y., Dara, A., Tekete, M.M., de Sousa, T.N., Sissoko, S., Dembele, L., Ouologuem, N., Togo, A.H., Alhousseini, M.L., et al., 2024. Population-specific variations in KCNH2 predispose patients to delayed ventricular repolarization upon dihydroartemisinin-piperaquine therapy. Antimicrob. Agents Chemother. 68, e0139023.
    Carter, H., Douville, C., Stenson, P.D., Cooper, D.N., Karchin, R., 2013. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics 14 Suppl 3, S3.
    Cheng, J., Novati, G., Pan, J., Bycroft, C., Zemgulyte, A., Applebaum, T., Pritzel, A., Wong, L.H., Zielinski, M., Sargeant, T., et al., 2023. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492.
    Choi, Y., Sims, G.E., Murphy, S., Miller, J.R., Chan, A.P., 2012. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688.
    Chun, S., Fay, J.C., 2009. Identification of deleterious mutations within three human genomes. Genome Res. 19, 1553-1561.
    Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., Liu, X., 2015. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 2125-2137.
    Emery, L.P., Brooks, G.A., 2022. Revisiting UGT1A1 Pharmacogenetic Testing Before Irinotecan-Why Not? JCO Oncol. Pract. 18, 281-282.
    Etienne-Grimaldi, M.-C., Boyer, J.-C., Thomas, F., Quaranta, S., Picard, N., Loriot, M.-A., Narjoz, C., Poncet, D., Gagnieu, M.-C., Ged, C., et al., 2015. UGT1A1 genotype and irinotecan therapy: general review and implementation in routine practice. Fundam. Clin. Pharmacol. 29, 219-237.
    Faisal, M.S., Jamil, A., Ali, N., Alshahrani, A.M., Almarshad, F., 2024. Distribution pattern of UGT1A6 and UGT2B7 gene polymorphism and its impact on the pharmacokinetics of valproic acid and carbamazepine: Prospective genetic association study conducted in Pakistani patients with epilepsy. Gene 892, 147886.
    Fujikura, K., Ingelman-Sundberg, M., Lauschke, V.M., 2015. Genetic variation in the human cytochrome P450 supergene family. Pharmacogenet. Genomics 25, 584-594.
    Gaibar, M., Novillo, A., Romero-Lorca, A., Esteban, M.E., Fernandez-Santander, A., 2018. Pharmacogenetics of UGT genes in North African populations. Pharmacogenomics J. 18, 609-612.
    Gammal, R.S., Court, M.H., Haidar, C.E., Iwuchukwu, O.F., Gaur, A.H., Alvarellos, M., Guillemette, C., Lennox, J.L., Whirl-Carrillo, M., Brummel, S.S., et al., 2016. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin. Pharmacol. Ther. 99, 363-369.
    Geck, R.C., Boyle, G., Amorosi, C.J., Fowler, D.M., Dunham, M.J., 2021. Measuring Pharmacogene Variant Function at Scale Using Multiplexed Assays. Annu. Rev. Pharmacol. Toxicol. 62, 531-550.
    Hu, D.G., Hulin, J.-A., Nair, P.C., Haines, A.Z., McKinnon, R.A., Mackenzie, P.I., Meech, R., 2019. The UGTome: The expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. Pharmacol. Ther. 204, 107414.
    Ioannidis, N.M., Rothstein, J.H., Pejaver, V., Middha, S., McDonnell, S.K., Baheti, S., Musolf, A., Li, Q., Holzinger, E., Karyadi, D., et al., 2016. REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. Am. J. Hum. Genet. 99, 877-885.
    Ionita-Laza, I., McCallum, K., Xu, B., Buxbaum, J., 2016. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet. 48, 214-220.
    Jagadeesh, K.A., Wenger, A.M., Berger, M.J., Guturu, H., Stenson, P.D., Cooper, D.N., Bernstein, J.A., Bejerano, G., 2016. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat. Genet. 48, 1581-1586.
    Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
    Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al., 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434-443.
    Kasteel, E.E.J., Darney, K., Kramer, N.I., Dorne, J.L.C.M., Lautz, L.S., 2020. Human variability in isoform-specific UDP-glucuronosyltransferases: markers of acute and chronic exposure, polymorphisms and uncertainty factors. Arch. Toxicol. 94, 2637-2661.
    Kim, J.Y., Cheong, H.S., Park, B.L., Kim, L.H., Namgoong, S., Kim, J.O., Kim, H.D., Kim, Y.H., Chung, M.W., Han, S.Y., Shin, H.D., 2014. Comprehensive variant screening of the UGT gene family. Yonsei Med. J. 55, 232-239.
    Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M., Shendure, J., 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310-315.
    Landrum, M.J., Lee, J.M., Riley, G.R., Jang, W., Rubinstein, W.S., Church, D.M., Maglott, D.R., 2014. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980-D985.
    Lankisch, T.O., Vogel, A., Eilermann, S., Fiebeler, A., Krone, B., Barut, A., Manns, M.P., Strassburg, C.P., 2005. Identification and Characterization of a Functional TATA Box Polymorphism of the UDP Glucuronosyltransferase 1A7 Gene. Mol. Pharmacol. 67, 1732-1739.
    Li, B., Krishnan, V.G., Mort, M.E., Xin, F., Kamati, K.K., Cooper, D.N., Mooney, S.D., Radivojac, P., 2009. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25, 2744-2750.
    Li, D., Fournel-Gigleux, S., Barre, L., Mulliert, G., Netter, P., Magdalou, J., Ouzzine, M., 2007. Identification of Aspartic Acid and Histidine Residues Mediating the Reaction Mechanism and the Substrate Specificity of the Human UDP-glucuronosyltransferases 1A. J. Biol. Chem. 282, 36514-36524.
    Mackenzie, P.I., Bock, K.W., Burchell, B., Guillemette, C., Ikushiro, S., Iyanagi, T., Miners, J.O., Owens, I.S., Nebert, D.W., 2005. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet. Genomics 15, 677-685.
    Marcus, J., Popko, B., 2002. Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim. Biophys. Acta 1573, 406-413.
    Martin, F.J., Amode, M.R., Aneja, A., Austine-Orimoloye, O., Azov, A.G., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., et al., 2022. Ensembl 2023. Nucleic Acids Res. 51, D933-D941.
    Meech, R., Hu, D.G., McKinnon, R.A., Mubarokah, S.N., Haines, A.Z., Nair, P.C., Rowland, A., Mackenzie, P.I., 2019. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol. Rev. 99, 1153-1222.
    Meech, R., Mackenzie, P.I., 2010. UGT3A: novel UDP-glycosyltransferases of the UGT superfamily. Drug Metab. Rev. 42, 45-54.
    Meech, R., Mubarokah, N., Shivasami, A., Rogers, A., Nair, P.C., Hu, D.G., McKinnon, R.A., Mackenzie, P.I., 2015. A Novel Function for UDP Glycosyltransferase 8: Galactosidation of Bile Acids. Mol. Pharmacol. 87, 442-450.
    Meech, R., Rogers, A., Zhuang, L., Lewis, B.C., Miners, J.O., Mackenzie, P.I., 2012. Identification of Residues That Confer Sugar Selectivity to UDP-Glycosyltransferase 3A (UGT3A) Enzymes. J. Biol. Chem. 287, 24122-24130.
    Miley, M.J., Zielinska, A.K., Keenan, J.E., Bratton, S.M., Radominska-Pandya, A., Redinbo, M.R., 2007. Crystal Structure of the Cofactor-Binding Domain of the Human Phase II Drug-Metabolism Enzyme UDP-Glucuronosyltransferase 2B7. J. Mol. Biol. 369, 498-511.
    Ng, P.C., Henikoff, S., 2001. Predicting deleterious amino acid substitutions. Genome Res. 11, 863-874.
    Offen, W., Martinez-Fleites, C., Yang, M., Kiat-Lim, E., Davis, B.G., Tarling, C.A., Ford, C.M., Bowles, D.J., Davies, G.J., 2006. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25, 1396-1405.
    Park, W.B., Choe, P.G., Song, K.-H., Jeon, J.H., Park, S.W., Kim, H.B., Kim, N.J., Oh, M., Choe, K.W., 2010. Genetic Factors Influencing Severe Atazanavir-Associated Hyperbilirubinemia in a Population with Low UDP-Glucuronosyltransferase 1A1*28 Allele Frequency. Clin. Infect. Dis. 51, 101-106.
    Patana, A.-S., Kurkela, M., Finel, M., Goldman, A., 2008. Mutation analysis in UGT1A9 suggests a relationship between substrate and catalytic residues in UDP-glucuronosyltransferases. Protein Eng. Des. Sel. 21, 537-543.
    Powers, D.M.W., 2011. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. J. Mach. Learning Technol. 2, 37-63.
    Qi, H., Zhang, H., Zhao, Y., Chen, C., Long, J.J., Chung, W.K., Guan, Y., Shen, Y., 2021. MVP predicts the pathogenicity of missense variants by deep learning. Nat. Commun. 12, 510.
    Quang, D., Chen, Y., Xie, X., 2015. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 761-763.
    Reva, B., Antipin, Y., Sander, C., 2011. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, e118.
    Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Foster, J.G., Grody, W.W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H.L., 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405-423.
    Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., Muller, M., 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77.
    Schaller, L., Lauschke, V.M., 2019. The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum. Genet. 138, 1359-1377.
    Shihab, H.A., Gough, J., Cooper, D.N., Stenson, P.D., Barker, G.L.A., Edwards, K.J., Day, I.N.M., Gaunt, T.R., 2012. Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models. Hum. Mutat. 34, 57-65.
    Shihab, H.A., Rogers, M.F., Gough, J., Mort, M., Cooper, D.N., Day, I.N.M., Gaunt, T.R., Campbell, C., 2015. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31, 1536-1543.
    Sondka, Z., Dhir, N.B., Carvalho-Silva, D., Jupe, S., Madhumita, McLaren, K., Starkey, M., Ward, S., Wilding, J., Ahmed, M., et al., 2024. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 52, D1210-D1217.
    Stingl, J.C., Bartels, H., Viviani, R., Lehmann, M.L., Brockmoller, J., 2014. Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic review. Pharmacol. Ther. 141, 92-116.
    Sundaram, L., Gao, H., Padigepati, S.R., McRae, J.F., Li, Y., Kosmicki, J.A., Fritzilas, N., Hakenberg, J., Dutta, A., Shon, J., Xu, J., Batzoglou, S., Li, X., Farh, K.K.-H., 2018. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 50, 1161-1170.
    Teh, L.K., Hashim, H., Zakaria, Z.A., Salleh, M.Z., 2012. Polymorphisms of UGT1A1*6, UGT1A1*27 & UGT1A1*28 in three major ethnic groups from Malaysia. Indian J. Med. Res. 136, 249-259.
    Vardhanabhuti, S., Ribaudo, H.J., Landovitz, R.J., Ofotokun, I., Lennox, J.L., Currier, J.S., Olson, L.M., Haas, D.W., 2015. Screening for UGT1A1 Genotype in Study A5257 Would Have Markedly Reduced Premature Discontinuation of Atazanavir for Hyperbilirubinemia. Open Forum Infect. Dis. 2, ofv085.
    Wang, K., Li, M., Hakonarson, H., 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.-e164.
    Wells, P.G., Mackenzie, P.I., Chowdhury, J.R., Guillemette, C., Gregory, P.A., Ishii, Y., Hansen, A.J., Kessler, F.K., Kim, P.M., Chowdhury, N.R., Ritter, J.K., 2004. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab. Dispos. 32, 281-290.
    Williams, J.A., Hyland, R., Jones, B.C., Smith, D.A., Hurst, S., Goosen, T.C., Peterkin, V., Koup, J.R., Ball, S.E., 2004. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Dispos. 32, 1201-1208.
    Xiao, Q., Zhou, Y., Lauschke, V.M., 2020. Ethnogeographic and inter-individual variability of human ABC transporters. Hum. Genet. 139, 623-646.
    Yang, G., Ge, S., Singh, R., Basu, S., Shatzer, K., Zen, M., Liu, J., Tu, Y., Zhang, C., Wei, J., Shi, J., Zhu, L., Liu, Z., Wang, Y., Gao, S., Hu, M., 2017. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 49, 105-138.
    Zhang, B., Lauschke, V.M., 2019. Genetic variability and population diversity of the human SLCO (OATP) transporter family. Pharmacol. Res. 139, 550-559.
    Zhang, L., Zhu, L., Qu, W., Wu, F., Hu, M., Xie, W., Liu, Z., Wang, C., 2020. Insight into tartrate inhibition patterns in vitro and in vivo based on cocrystal structure with UDP-glucuronosyltransferase 2B15. Biochem. Pharmacol. 172, 113753.
    Zhou, Y., Lauschke, V.M., 2022. The genetic landscape of major drug metabolizing cytochrome P450 genes-an updated analysis of population-scale sequencing data. Pharmacogenomics J. 22, 284-293.
    Zhou, Y., Mkrtchian, S., Kumondai, M., Hiratsuka, M., Lauschke, V.M., 2019. An optimized prediction framework to assess the functional impact of pharmacogenetic variants. Pharmacogenomics J. 19, 115-126.
    Zhou, Y., Tremmel, R., Schaeffeler, E., Schwab, M., Lauschke, V.M., 2022. Challenges and opportunities associated with rare-variant pharmacogenomics. Trends Pharmacol. Sci. 43, 852-865.
    Zucker, S.D., Qin, X., Rouster, S.D., Yu, F., Green, R.M., Keshavan, P., Feinberg, J., Sherman, K.E., 2001. Mechanism of indinavir-induced hyperbilirubinemia. Proc. Natl. Acad. Sci. U. S. A. 98, 12671-12676.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return