8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

Epigenomic features associated with body temperature stabilize tissues during cold exposure in cold-resistant pigs

doi: 10.1016/j.jgg.2024.06.017
Funds:

This work was supported by the National Natural Science Foundation of China (32202634), National Natural Science Foundation of China (31961143020), National Natural Science Foundation of China (U20A2052), China Agricultural Research System (CARS-35), and the Heilongjiang Provincial Research Institutes Research Business Fund Project (CZKYF2023-1-B009).

  • Received Date: 2024-03-27
  • Accepted Date: 2024-06-27
  • Rev Recd Date: 2024-06-26
  • Available Online: 2025-06-06
  • Publish Date: 2024-07-04
  • Cold stress in low-temperature environments can trigger changes in gene expression, but epigenomics regulation of temperature stability in vital tissues, including the fat and diencephalon, is still unclear. Here, we explore the cold-induced changes in epigenomic features in the diencephalon and fat tissues of two cold-resistant Chinese pig breeds, Min and Enshi black (ES) pigs, utilizing H3K27ac CUT&Tag, RNA-seq, and selective signature analysis. Our results show significant alterations in H3K27ac modifications in the diencephalon of Min pigs and the fat of ES pigs after cold exposure. Dramatic changes in H3K27ac modifications in the diencephalon of Min pig are primarily associated with genes involved in energy metabolism and hormone regulation, whereas those in the fat of ES pig are primarily associated with immunity-related genes. Moreover, transcription factors PRDM1 and HSF1, which show evidence of selection, are enriched in genomic regions presenting cold-responsive alterations in H3K27ac modification in the Min pig diencephalon and ES pig fat, respectively. Our results indicate the diversity of epigenomic response mechanisms to cold exposure between Min and ES pigs, providing unique epigenetic resources for studies of low-temperature adaptation in large mammals.
  • loading
  • Aldana, R., Freed, D., 2022. Data processing and germline variant calling with the sentieon pipeline. Methods Mol. Biol. 2493, 1-19.
    Bailey, T.L., Johnson, J., Grant, C.E., Noble, W.S., 2015. The MEME Suite. Nucleic Acids Res. 43, W39-W49.
    Baudier, J., Gentil, B.J., 2020. The S100B protein and partners in adipocyte response to cold stress and adaptive thermogenesis: facts, hypotheses, and perspectives. Biomolecules 10, 863.
    Cannon, B., de Jong, J.M.A., Fischer, A.W., Nedergaard, J., Petrovic, N., 2020. Human brown adipose tissue: classical brown rather than brite/beige? Exp. Physiol. 105, 1191-1200.
    Castellani, J.W., Young, A.J., 2016. Human physiological responses to cold exposure: acute responses and acclimatization to prolonged exposure. Auton. Neurosci. 196, 63-74.
    Chen, T., Chen, X., Zhang, S., Zhu, J., Tang, B., Wang, A., Dong, L., Zhang, Z., Yu, C., Sun, Y., Chi, L., Chen, H., Zhai, S., Sun, Y., Lan, L., Zhang, X., Xiao, J., Bao, Y., Wang, Y., Zhang, Z., Zhao, W., 2021. The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genomics Proteomics Bioinformatics 19, 578-583.
    Cobanovic, N., Stajkovic, S., Blagojevic, B., Betic, N., Dimitrijevic, M., Vasilev, D., Karabasil, N., 2020. The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int. J. Biometeorol. 64, 1899-1909.
    CNCB-NGDC Members and Partners, 2022. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 50, D27-D38.
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al., 2011. The variant call format and VCFtools. Bioinformatics. 27, 2156-2158.
    Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., Li, H., 2021. Twelve years of SAMtools and BCFtools. Gigascience. 10. giab008.
    Feng, J., Liu, T., Qin, B., Zhang, Y., Liu, X.S., 2012. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 7, 1728-1740.
    Fu, Y., Li, C., Tang, Q., Tian, S., Jin, L., Chen, J., Li, M., Li, C., 2016. Genomic analysis reveals selection in Chinese native black pig. Sci. Rep. 6, 36354.
    Fu, Y., Liu, H., Dou, J., Wang, Y., Liao, Y., Huang, X., Tang, Z., Xu, J., Yin, D., Zhu, S., et al., 2023. IAnimal: a cross-species omics knowledgebase for animals. Nucleic Acids Res. 51, D1312-D1324.
    Godbout, J.P., Glaser, R., 2006. Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. J. Neuroimmune Pharmacol. 1, 421-427.
    Hallmark, B., Karafet, T.M., Hsieh, P., Osipova, L.P., Watkins, J.C., Hammer, M.F., 2019. Genomic evidence of local adaptation to climate and diet in indigenous siberians. Mol. Biol. Evol. 36, 315-327.
    He, L., Li, H., Zhang, L., Zhang, J., Zhang, G., Tong, X., Zhang, T., Wu, Y., Li, M., Jin, L., 2023. Transcriptome analysis of norepinephrine-induced lipolysis in differentiated adipocytes of Bama pig. Gene 888:147753.
    Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., Glass, C.K., 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576-589.
    Hernandez-Lagunas, L., Choi, I.F., Kaji, T., Simpson, P., Hershey, C., Zhou, Y., Zon, L., Mercola, M., Artinger, K.B., 2005. Zebrafish narrowminded disrupts the transcription factor prdm1 and is required for neural crest and sensory neuron specification. Dev. Biol. 278, 347-357.
    Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-Andre, V., Sigova, A.A., Hoke, H.A., Young, R.A., 2013. Super-enhancers in the control of cell identity and disease. Cell 15, 934-947.
    Huang, D.W., Sherman, B.T., Lempicki, R.A., 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.
    Kaya-Okur, H.S., Janssens, D.H., Henikoff, J.G., Ahmad, K., Henikoff, S., 2020. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264-3283.
    Kelley, K.W., Blecha, F., Regnier, J.A., 1982. Cold exposure and absorption of colostral immunoglobulins by neonatal pigs. J. Anim. Sci. 55, 363-368.
    Kobayashi, S., Hori, A., Matsumura, K., Hosokawa, H., 2006. Point: heat-induced membrane depolarization of hypothalamic neurons: a putative mechanism of central thermosensitivity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1479-R1480.
    Kozyreva, T.V., Eliseeva, L.S., 2000. Immune response in cold exposures of different types. J. Therm. Biol. 25, 401-404.
    Lafaucheur, L., Dividich, J.l., Mourot, J., Monin, G., Ecolan, P., Krauss, D., 1991. Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. J. Anim. Sci. 69, 2844-2854.
    Lancaster, L.T., Dudaniec, R.Y., Chauhan, P., Wellenreuther, M., Svensson, E.I., Hansson, B., 2016. Gene expression under thermal stress varies across a geographical range expansion front. Mol. Ecol. 25, 1141-1156.
    Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
    Ledividich, J., Noblet, J., 1981. Colostrum intake and thermoregulation in the neonatal pig in relation to environmental temperature. Biol. Neonate 40, 167-174.
    Li, A., Zhao, M., Zhang, Z., Wang, C., Zhang, K., Zhang, X., De Wit, P.R., Wang, W., Gao, J., Guo, X., et al., 2023. Genome architecture and selective signals compensatorily shape plastic response to a new environment. Innovation (Camb). 4, 100464.
    Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    Li, J., Xiang, Y., Zhang, L., Qi, X., Zheng, Z., Zhou, P., Tang, Z., Jin, Y., Zhao, Q., Fu, Y., et al., 2022. Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome. BMC Biol. 20, 136.
    Librado, P., Sarkissian, C.D., Ermini, L., Schubert, M., Jonsson, H., Albrechtsen, A., Fumagalli, M., Yang, M.A., Gambo, C., Seguin-Orlando, A., et al., 2015. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl. Acad. Sci U. S. A. 112, E6889-E6897.
    Liu, Z., Zhang, D., Wang, W., He, X., Peng, F., Wang, L., Guo, Z., Fu, B., Wu, S., Li, Z., Sun, J., Chui, Y., Liu, D., 2017. A comparative study of the effects of long-term cold exposure, and cold resistance in Min Pigs and Large White Pigs. Acta Agric. Scand. A. Anim. Sci. 67, 34-39.
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.
    Loven, J., Hoke, H.A., Lin, C.Y., Lau, A., Orlando, D.A., Vakoc, C.R., Bradner, J.E., Lee, T.I., Young, R.A., 2013. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320-334.
    Ma, H., Fu, B., Zhang, X., Wang, L., Li, Z., Liu, D., 2019. Expression and subcellular localization of HSPC117 in min pig tissues and the PK15 cell line. Technol. Health Care. 27, 301-306.
    Junjie, M., 2021. Preliminary Identification of LncRNA and mRNA Related to Cold Stress in Back Adipose Tissues of Min Pig. Northeast Agricultural University, Harbin China.
    Ma, R., Kuang, Z., Zhang, C., Xu, Y., Han, Y., Hu, Y., Wang, D., Luan, Y., Fu, H., Zhang, Y., Li, Y., Zhu, M., Xiang, T., Zhao, H., 2024. Screening and assessment of functional variants by regulatory features from epigenomic data in livestock species. bioRxiv. 2024 (02), 06.578787.
    Ma, J., Wang, L., Liu, D., Zhang, D., Yang, X., 2021. Screening and analysis of differentially expressed lncRNA in min pig back fat after cold stress. Acta Veterinaria et Zootechnica Sinica 52 (4), 932-942.
    Man, K., Kallies, A., Vasanthakumar, A., 2022. Resident and migratory adipose immune cells control systemic metabolism and thermogenesis. Cell. Mol. Immunol. 19, 421-431.
    McCaw, B.A., Stevenson, T.J., Lancaster, L.T., 2020. Epigenetic responses to temperature and climate. Integr. Comp. Biol. 60, 1469-1480.
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., DePristo, M.A., 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
    McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., Bejerano, G., 2010. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495-501.
    Ramirez, F., Duendar, F., Diehl, S., Gruening, B.A., Manke, T., 2014. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187-W191.
    Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26, 139-140.
    Ruwe, W.D., Veale, W.L., Cooper, K.E., 1983. Peptide neurohormones: their role in thermoregulation and fever. Can. J. Biochem. Cell Biol. 61, 579-593.
    Shi, M., Zhang, Q., Li, Y., Zhang, W., Liao, L., Cheng, Y., Jiang, Y., Huang, X., Duan, Y., Xia, L., Ye, W., Wang, Y., Xia, X.-Q., 2020. Global gene expression profile under low-temperature conditions in the brain of the grass carp (Ctenopharyngodon idellus). PLoS One 15, e0239730.
    Shin, S., Ajuwon, K.M., 2018. Divergent response of murine and porcine adipocytes to stimulation of browning genes by 18-carbon polyunsaturated fatty acids and beta-receptor agonists. Lipids 53, 65-75.
    Tabuchi, C., Sul, H.S., 2021. Signaling pathways regulating thermogenesis. Front. Endocrinol. (Lausanne) 12, 595020.
    Verma, N., Perie, L., Mueller, E., 2020. The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3. J. Biol. Chem. 295, 5984-5994.
    Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., Young, R.A., 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307-319.
    Xie, S., Yang, X., Wang, D., Zhu, F., Yang, N., Hou, Z., Ning, Z., 2018. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds. PLoS One 13, e0191096.
    Xu, N.-Y., Si, W., Li, M., Gong, M., Lariviere, J.-M., Nanaei, H.A., Bian, P.-P., Jiang, Y., Zhao, X., 2021a. Genome-wide scan for selective footprints and genes related to cold tolerance in Chantecler chickens. Zool. Res. 42, 710-720.
    Xu, Z., Mei, S., Zhou, J., Zhang, Y., Qiao, M., Sun, H., Li, Z., Li, L., Dong, B., Oyelami, F.O., Wu, J., Peng, X., 2021b. Genome-wide assessment of runs of homozygosity and estimates of genomic inbreeding in a Chinese composite pig breed. Front. Genet. 12, 720081.
    Yang, C., Cao, C., Liu, J., Zhao, Y., Pan, J., Tao, C., Wang, Y., 2023. Distinct Transcriptional responses of skeletal muscle to short-term cold exposure in Tibetan pigs and Bama pigs. Int. J. Mol. Sci. 24:7431.
    Zhang, D., Ma, S., Wang, L., Ma, H., Wang, W., Xia, J., Liu, D., 2022a. Min pig skeletal muscle response to cold stress. PLoS One 17,e0274184.
    Zhang, D., Wang, W., Li, Z., Wang, L., Liu, D., 2022b. Deciphering the lncRNA and mRNA profiles of Min pig backfat after acute cold stress. J. Appl. Anim. Res. 50, 620-628.
    Zhang, D., Liu, D., Wang, L., Wang, W., He, X., Yang, G., 2017. Gene expression profile analysis of pig muscle in response to cold stress. J. Appl. Anim. Res. 45, 195-198.
    Zhao, Y., Hou, Y., Xu, Y., Luan, Y., Zhou, H., Qi, X., Hu, M., Wang, D., Wang, Z., Fu, Y., Li, J., Zhang, S., Chen, J., Han, J., Li, X., Zhao, S., 2021. A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nat. Commun. 12, 2217.
    Zhao, F., Zhang, Z., Yao, H., Wang, L., Liu, T., Yu, X., Li, S., Xu, S., 2013. Effects of cold stress on mRNA expression of immunoglobulin and cytokine in the small intestine of broilers. Res. Vet. Sci. 95, 146-155.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return