De Fazio, S., Bartonicek, N., Di Giacomo, M., Abreu-Goodger, C., Sankar, A., Funaya, C., Antony, C., Moreira, P.N., Enright, A.J., O'Carroll, D., 2011. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 259-263.
|
Gou, L.T., Gao, Y., Kang, J.Y., Wang, X., Chen, H., Hua, M.M., Li, Z., Li, D., Fu, X.D., Shi, H.J., et al., 2021. Reply to Lack of evidence for a role of PIWIL1 variants in human male infertility. Cell 184, 1943-1944.
|
Krausz, C., Riera-Escamilla, A., 2018. Genetics of male infertility. Nat. Rev. Urol. 15, 369-384.
|
Nagirnaja, L., Moerup, N., Nielsen, J.E., Stakaitis, R., Golubickaite, I., Oud, M.S., Winge, S.B., Carvalho, F., Aston, K.I., Khani, F., et al., 2021. Variant PNLDC1, defective piRNA processing, and azoospermia. N. Engl. J. Med. 385, 707-719.
|
Pandey, R.R., Tokuzawa, Y., Yang, Z., Hayashi, E., Ichisaka, T., Kajita, S., Asano, Y., Kunieda, T., Sachidanandam, R., Chuma, S., et al., 2013. Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc. Natl. Acad. Sci. U. S. A. 110, 16492-16497.
|
Reuter, M., Chuma, S., Tanaka, T., Franz, T., Stark, A., Pillai, R.S., 2009. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat. Struct. Mol. Biol. 16, 639-646.
|
Schopp, T., Zoch, A., Berrens, R.V., Auchynnikava, T., Kabayama, Y., Vasiliauskaite, L., Rappsilber, J., Allshire, R.C., O'Carroll, D., 2020. TEX15 is an essential executor of MIWI2-directed transposon DNA methylation and silencing. Nat. Commun. 11, 3739.
|
Shoji, M., Tanaka, T., Hosokawa, M., Reuter, M., Stark, A., Kato, Y., Kondoh, G., Okawa, K., Chujo, T., Suzuki, T., et al., 2009. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell 17, 775-787.
|
Tang, D., Li, K., Geng, H., Xu, C., Lv, M., Gao, Y., Wang, G., Yu, H., Shao, Z., Shen, Q., et al., 2022. Identification of deleterious variants in patients with male infertility due to idiopathic non-obstructive azoospermia. Reprod. Biol. Endocrinol. 20, 63.
|
Tao, J., Wang, Q., Mendez-Dorantes, C., Burns, K.H., Chiarle, R., 2022. Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Nat. Commun. 13, 3685.
|
Wang, X., Ramat, A., Simonelig, M., Liu, M.F., 2023. Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol. 24, 123-141.
|
Wang, X., Tan, Y.Q., Liu, M.F., 2022. Defective piRNA processing and azoospermia. N. Engl. J. Med. 386, 1674-1675.
|
Watanabe, T., Cui, X., Yuan, Z., Qi, H., Lin, H., 2018. MIWI2 targets RNAs transcribed from piRNA-dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J. 37, e95329.
|
Wei, H., Gao, J., Lin, D.H., Geng, R., Liao, J., Huang, T.Y., Shang, G., Jing, J., Fan, Z.W., Pan, D., et al., 2024. piRNA loading triggers MIWI translocation from the intermitochondrial cement to chromatoid body during mouse spermatogenesis. Nat. Commun. 15, 2343.
|
Yang, Z., Chen, K.M., Pandey, R.R., Homolka, D., Reuter, M., Janeiro, B.K., Sachidanandam, R., Fauvarque, M.O., McCarthy, A.A., Pillai, R.S., 2016. PIWI slicing and EXD1 drive biogenesis of nuclear piRNAs from cytosolic targets of the mouse piRNA pathway. Mol. Cell 61, 138-152.
|