8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 11
Nov.  2024
Turn off MathJax
Article Contents

Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development

doi: 10.1016/j.jgg.2024.06.010
Funds:

This work was supported by the National Natural Science Foundation of China (32100784), the Natural Science Foundation of Jiangsu Province (BK20221458), and the Fundamental Research Funds for the Central Universities (also known as the Southeast University Zhishan Young Scholars Program, 2242024RCB0031).

  • Received Date: 2024-04-24
  • Accepted Date: 2024-06-19
  • Rev Recd Date: 2024-06-18
  • Available Online: 2025-06-06
  • Publish Date: 2024-06-24
  • Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
  • loading
  • Abushalbaq, O., Baek, J., Yaron, A., Tran, T.S., 2024. Balancing act of small GTPases downstream of plexin-A4 signaling motifs promotes dendrite elaboration in mammalian cortical neurons. Sci. Signal. 17, eadh7673 .
    Ackermann, M., Matus, A., 2003. Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat. Neurosci. 6, 1194-1200.
    Aher, A., Urnavicius, L., Xue, A., Neselu, K., Kapoor, T.M., 2024. Structure of the γ-tubulin ring complex-capped microtubule. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01264-z.
    Akhmanova, A., Steinmetz, M.O., 2015. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Bio. 16, 711-726.
    Andoh, M., Ikegaya, Y., Koyama, R., 2019. Synaptic Pruning by Microglia in Epilepsy. J. Clin. Med. 8, 2170.
    Bartels, T., De Schepper, S., Hong, S., 2020. Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases. Science 370, 66-69.
    Bednarek, S.Y., Ravazzola, M., Hosobuchi, M., Amherdt, M., Perrelet, A., Schekman, R., Orci, L., 1995. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 83, 1183-1196.
    Benyair, R., Giridharan, S.S.P., Rivero-Rios, P., Hasegawa, J., Bristow, E., Eskelinen, E.L., Shmueli, M.D., Fishbain-Yoskovitz, V., Merbl, Y., Sharkey, L.M., et al., 2023. Upregulation of the ESCRT pathway and multivesicular bodies accelerates degradation of proteins associated with neurodegeneration. Autophagy Rep. 2, 2166722.
    Biondini, M., Sadou-Dubourgnoux, A., Paul-Gilloteaux, P., Zago, G., Arslanhan, M.D., Waharte, F., Formstecher, E., Hertzog, M., Yu, J.C., Guerois, R., et al., 2016. Direct interaction between exocyst and Wave complexes promotes cell protrusions and motility. J. Cell Sci. 129, 3756-3769.
    Bodemann, B.O., Orvedahl, A., Cheng, T.L., Ram, R.R., Ou, Y.H., Formstecher, E., Maiti, M., Hazelett, C.C., Wauson, E.M., Balakireva, M., et al., 2011. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144, 253-267.
    Boivin, J.C., Zhu, J.Y., Ohyama, T., 2023. Nociception in fruit fly larvae. Front. Pain Res. 4, 1076017.
    Bonfim-Melo, A., Ferreira, E.R., Mortara, R.A., 2018. Rac1/WAVE2 and Cdc42/N-WASP participation in actin-dependent host cell invasion by extracellular amastigotes of Trypanosoma cruzi. Front. Microbiol. 9, 360.
    Breitsprecher, D., Goode, B.L., 2013. Formins at a glance. J. Cell Sci. 126, 1-7.
    Bretscher, A., Edwards, K., Fehon, R.G., 2002. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Bio. 3, 586-599.
    Cai, R.L., Wang, Y.Y., Huang, Z.T., Zou, Q., Pu, Y.S., Yu, C.Y., Cai, Z.Y., 2021. Role of RhoA/ROCK signaling in Alzheimer's disease. Behav. Brain Res. 414, 113481.
    Carlton, J.G., Jones, H., Eggert, U.S., 2020. Membrane and organelle dynamics during cell division. Nat. Rev. Mol. Cell Bio. 21, 151-166.
    Cheever, T.R., Ervasti, J.M., 2013. Actin isoforms in neuronal development and function. Int. Rev. Cell Mol. Biol. 301, 157-213.
    Chen, H.X., Firestein, B.L., 2007. RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels. J. Neurosci. 27, 8378-8386.
    Chhabra, E.S., Higgs, H.N., 2007. The many faces of actin: matching assembly factors with cellular structures. Nat. Cell Biol. 9, 1110-1121.
    Choi, J.H.K., Kaur, G., Mazzella, M.J., Morales-Corraliza, J., Levy, E., Mathews, P.M., 2013. Early endosomal abnormalities and cholinergic neuron degeneration in amyloid-β protein precursor transgenic mice. J. Alzheimers Dis. 34, 691-700.
    Chung, C.G., Park, S.S., Park, J.H., Lee, S.B., 2020. Dysregulated plasma membrane turnover underlying dendritic pathology in neurodegenerative diseases. Front. Cell Neurosci. 14, 556461.
    Colombo, A., Palma, K., Armijo, L., Mione, M., Signore, I.A., Morales, C., Guerrero, N., Meynard, M.M., Perez, R., Suazo, J., et al., 2013. Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth. Development 140, 3997-4007.
    Condeelis, J., 2001. How is actin polymerization nucleated in vivo? Trends. Cell Biol. 11, 288-293.
    Da Silva, J.S., Dotti, C.G., 2002. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat. Rev. Neurosci. 3, 694-704.
    Das, R., Bhattacharjee, S., Letcher, J.M., Harris, J.M., Nanda, S., Foldi, I., Lottes, E.N., Bobo, H.M., Grantier, B.D., Mihaly, J., et al., 2021. Formin 3 directs dendritic architecture via microtubule regulation and is required for somatosensory nociceptive behavior. Development 148, dev187609.
    DesMarais, V., Ghosh, M., Eddy, R., Condeelis, J., 2005. Cofilin takes the lead. J. Cell Sci. 118, 19-26.
    Firkowska, M., Macias, M., Jaworski, J., 2019. ESCRT proteins control the dendritic morphology of developing and mature hippocampal neurons. Mol. Neurobiol. 56, 4866-4879.
    Fox, M.E., Chandra, R., Menken, M.S., Larkin, E.J., Nam, H., Engeln, M., Francis, T.C., Lobo, M.K., 2020. Dendritic remodeling of D1 neurons by RhoA/Rho-kinase mediates depression-like behavior. Mol. Psychiatry 25, 1022-1034.
    Furuta, N., Makioka, K., Fujita, Y., Ikeda, M., Takatama, M., Matsuoka, M., Okamoto, K., 2013. Reduced expression of BTBD10 in anterior horn cells with Golgi fragmentation and pTDP-43-positive inclusions in patients with sporadic amyotrophic lateral sclerosis. Neuropathology 33, 397-404.
    Galbraith, K.K., Kengaku, M., 2019. Multiple roles of the actin and microtubule-regulating formins in the developing brain. Neurosci. Res. 138, 59-69.
    Gallo, G., 2024. The axonal actin filament cytoskeleton: structure, function, and relevance to injury and degeneration. Mol. Neurobiol. https://doi.org/10.1007/s12035-023-03879-7.
    Gao, Z., Huang, E., Wang, W., Xu, L., Xu, W., Zheng, T., Rui, M., 2024. Patronin regulates presynaptic microtubule organization and neuromuscular junction development in Drosophila. iScience 27, 108944.
    Gauthier-Campbell, C., Bredt, D.S., Murphy, T.H., El-Husseini, A.E.D., 2004. Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs. Mol. Biol. Cell 15, 2205-2217.
    Ghosh, M., Song, X.Y., Mouneimne, G., Sidani, M., Lawrence, D.S., Condeelis, J.S., 2004. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743-746.
    Gonatas, N.K., Stieber, A., Mourelatos, Z., Chen, Y., Gonatas, J.O., Appel, S.H., Hays, A.P., Hickey, W.F., Hauw, J.J., 1992. Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis. Am. J. Pathol. 140, 731-737.
    Gonzalez-Gutierrez, A., Lazo, O.M., Bronfman, F.C., 2020. The Rab5-Rab11 endosomal pathway is required for BDNF-induced CREB transcriptional regulation in hippocampal neurons. J. Neurosci. 40, 8042-8054.
    Goode, B.L., Eskin, J., Shekhar, S., 2023. Mechanisms of actin disassembly and turnover. J. Cell Biol. 222, e202309021.
    Goodwin, P.R., Sasaki, J.M., Juo, P., 2012. Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in motor neurons. J. Neurosci. 32, 8158-8172.
    Gromova, K.V., Muhia, M., Rothammer, N., Gee, C.E., Thies, E., Schaefer, I., Kress, S., Kilimann, M.W., Shevchuk, O., Oertner, T.G., et al., 2018. Neurobeachin and the Kinesin KIF21B are critical for endocytic recycling of NMDA receptors and regulate social behavior. Cell Rep. 23, 2705-2717.
    Haggerty, T., Credle, J., Rodriguez, O., Wills, J., Oaks, A.W., Masliah, E., Sidhu, A., 2011. Hyperphosphorylated Tau in an α-synuclein-overexpressing transgenic model of Parkinson's disease. Eur. J. Neurosci. 33, 1598-1610.
    Hall, A., Nobes, C.D., 2000. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 965-970.
    Hanus, C., Ehlers, M.D., 2008. Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic 9, 1437-1445.
    Hasegawa, K., Matsui, T.K., Kondo, J., Kuwako, K.I., 2022. N-WASP-Arp2/3 signaling controls multiple steps of dendrite maturation in Purkinje cells. Development 149, dev201214.
    Heider, M.R., Gu, M.Y., Duffy, C.M., Mirzal, A.M., Marcotte, L.L., Walls, A.C., Farra, N., Hakhverdyan, Z., Field, M.C., Rout, M.P., et al., 2016. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat. Struct. Mol. Biol. 23, 59-66.
    Herzmann, S., Gotzelmann, I., Reekers, L.F., Rumpf, S., 2018. Spatial regulation of microtubule disruption during dendrite pruning in Drosophila. Development 145, dev156950.
    Hong, E.H., Kim, J.Y., Kim, J.H., Lim, D.S., Kim, M., Kim, J.Y., 2018. BIG2-ARF1-RhoA-mDia1 signaling regulates dendritic Golgi polarization in hippocampal neurons. Mol. Neurobiol. 55, 7701-7716.
    Horton, A.C., Ehlers, M.D., 2004. Secretory trafficking in neuronal dendrites. Nat. Cell Biol. 6, 585-591.
    Horton, A.C., Racz, B., Monson, E.E., Lin, A.L., Weinberg, R.J., Ehlers, M.D., 2005. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757-771.
    Hsu, V.W., Lee, S.Y., Yang, J.S., 2009. The evolving understanding of COPI vesicle formation. Nat. Rev. Mol. Cell Bio. 10, 360-364.
    Hutagalung, A.H., Novick, P.J., 2011. Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119-149.
    Ide, M., Lewis, D.A., 2010. Altered cortical CDC42 signaling pathways in schizophrenia: implications for dendritic spine deficits. Biol. Psychiatry 68, 25-32.
    Jan, Y.N., Jan, L.Y., 2010. Branching out: mechanisms of dendritic arborization. Nat. Rev. Neurosci. 11, 316-328.
    Jeyifous, O., Waites, C.L., Specht, C.G., Fujisawa, S., Schubert, M., Lin, E.I., Marshall, J., Aoki, C., de Silva, T., Montgomery, J.M., et al., 2009. SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat. Neurosci. 12, 1011-1019.
    Johnson, D.I., 1999. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54-105.
    Joshi, M., Viallat-Lieutaud, A., Royet, J., 2023. Role of Rab5 early endosomes in regulating Drosophila gut antibacterial response. iScience 26, 107335.
    Kanamori, T., Yoshino, J., Yasunaga, K., Dairyo, Y., Emoto, K., 2015. Local endocytosis triggers dendritic thinning and pruning in Drosophila sensory neurons. Nat. Commun. 6, 6515.
    Kapitein, L.C., Hoogenraad, C.C., 2015. Building the neuronal microtubule cytoskeleton. Neuron 87, 492-506.
    Kennedy, M.J., Ehlers, M.D., 2011. Mechanisms and function of dendritic exocytosis. Neuron 69, 856-875.
    Kilo, L., Stuerner, T., Tavosanis, G., Ziegler, A.B., 2021. Drosophila dendritic arborisation neurons: fantastic actin dynamics and where to find them. Cells 10, 2777.
    Kim, K.S., Marcogliese, P.C., Yang, J., Callaghan, S.M., Resende, V., Abdel-Messih, E., Marras, C., Visanji, N.P., Huang, J., Schlossmacher, M.G., et al., 2018. Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proc. Natl. Acad. Sci. U. S. A. 115, E5164-E5173.
    Kirilly, D., Gu, Y., Huang, Y., Wu, Z., Bashirullah, A., Low, B.C., Kolodkin, A.L., Wang, H., Yu, F., 2009. A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nat. Neurosci. 12, 1497-1505.
    Kiuchi, T., Ohashi, K., Kurita, S., Mizuno, K., 2007. Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J. Cell Biol. 177, 465-476.
    Kobayashi, H., Etoh, K., Fukuda, M., 2014. Rab35 is translocated from Arf6-positive perinuclear recycling endosomes to neurite tips during neurite outgrowth. Small GTPases 5, e29290.
    Koleske, A.J., 2013. Molecular mechanisms of dendrite stability. Nat. Rev. Neurosci. 14, 536-550.
    Konietzny, A., Bar, J., Mikhaylova, M., 2017. Dendritic actin cytoskeleton: structure, functions, and regulations. Front. Cell Neurosci. 11, 147.
    Konur, S., Ghosh, A., 2005. Calcium signaling and the control of dendritic development. Neuron 46, 401-405.
    Korobova, F., Svitkina, T., 2010. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol. Biol. Cell 21, 165-176.
    Kramer, R., Rode, S., Rumpf, S., 2019. Rab11 is required for neurite pruning and developmental membrane protein degradation in sensory neurons. Dev. Biol. 451, 68-78.
    Lamers, I.J.C., Reijnders, M.R.F., Venselaar, H., Kraus, A., Jansen, S., de Vries, B.B.A., Houge, G., Gradek, G.A., Seo, J., Choi, M., et al., 2017. Recurrent de novo mutations disturbing the GTP/GDP binding pocket of RAB11B cause intellectual disability and a distinctive brain phenotype. Am. J. Hum. Genet. 101, 824-832.
    Lazo, O.M., Gonzalez, A., Ascano, M., Kuruvilla, R., Couve, A., Bronfman, F.C., 2013. BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching. J. Neurosci. 33, 6112-6122.
    Lee, J.A., Gao, F.B., 2008. ESCRT, autophagy, and frontotemporal dementia. BMB Rep. 41, 827-832.
    Lei, W.L., Omotade, O.F., Myers, K.R., Zheng, J.Q., 2016. Actin cytoskeleton in dendritic spine development and plasticity. Curr. Opin. Neurobiol. 39, 86-92.
    Lin, T., Kao, H.H., Chou, C.H., Chou, C.Y., Liao, Y.C., Lee, H.H., 2020. Rab11 activation by Ik2 kinase is required for dendrite pruning in Drosophila sensory neurons. PLoS Genet. 16, e1008626.
    Luo, G.Z., Zhang, J., Luca, F.C., Guo, W., 2013. Mitotic phosphorylation of Exo84 disrupts exocyst assembly and arrests cell growth. J. Cell Biol. 202, 97-111.
    Makarova, K.S., Tobiasson, V., Wolf, Y.I., Lu, Z.Y., Liu, Y., Zhang, S.Y., Krupovic, M., Li, M., Koonin, E.V., 2024. Diversity, origin, and evolution of the ESCRT systems. Mbio. 15, e0033524.
    Maruntelu, I., Constantinescu, A.E., Covache-Busuioc, R.A., Constantinescu, I., 2024. The Golgi apparatus: a key player in innate immunity. Int. J. Mol. Sci. 25, 4120.
    McAllister, A.K., 2000. Cellular and molecular mechanisms of dendrite growth. Cereb. Cortex 10, 963-973.
    Mei, J., Cai, Y., Wang, H.Y., Xu, R., Zhou, J.F., Lu, J.H., Yang, X.J., Pan, J.D., Liu, C.Y., Xu, J.Y., et al., 2023. Formin protein DIAPH1 positively regulates PD-L1 expression and predicts the therapeutic response to anti-PD-1/PD-L1 immunotherapy. Clin. Immunol. 246, 109204.
    Mei, K.R., Guo, W., 2018. The exocyst complex. Curr. Biol. 28, R922-R925.
    Mignogna, M.L., Musardo, S., Ranieri, G., Gelmini, S., Espinosa, P., Marra, P., Belloli, S., Murtaj, V., Moresco, R.M., Bellone, C., et al., 2021. RAB39B-mediated trafficking of the GluA2-AMPAR subunit controls dendritic spine maturation and intellectual disability-related behaviour. Mol. Psychiatry 26, 6531-6549.
    Mitra, J., Hegde, P.M., Hegde, M.L., 2019. Loss of endosomal recycling factor RAB11 coupled with complex regulation of MAPK/ERK/AKT signaling in postmortem spinal cord specimens of sporadic amyotrophic lateral sclerosis patients. Mol. Brain 12, 55.
    Mourelatos, Z., Adler, H., Hirano, A., Donnenfeld, H., Gonatas, J.O., Gonatas, N.K., 1990. Fragmentation of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis revealed by organelle-specific antibodies. Proc. Natl. Acad. Sci. U. S. A. 87, 4393-4395.
    Moya-Alvarado, G., Gonzalez, A., Stuardo, N., Bronfman, F.C., 2018. Brain-Derived neurotrophic factor (BDNF) regulates Rab5-Positive early endosomes in hippocampal neurons to induce dendritic branching. Front. Cell. Neurosci. 12, 493.
    Mukherjee, A., Andres Jeske, Y., Becam, I., Taieb, A., Brooks, P., Aouad, J., Monguillon, C., Conduit, P.T., 2024. γ-TuRCs and the augmin complex are required for the development of highly branched dendritic arbors in Drosophila. J. Cell Sci. 137, jcs261534.
    Munson, M., Novick, P., 2006. The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 13, 577-581.
    Murthy, M., Garza, D., Scheller, R.H., Schwarz, T.L., 2003. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433-447.
    Negishi, M., Katoh, H., 2002. Rho family GTPases as key regulators for neuronal network formation. J. Biochem. 132, 157-166.
    Nelson, A.D., Bender, K.J., 2021. Dendritic integration dysfunction in neurodevelopmental disorders. Dev. Neurosci. 43, 201-221.
    Nim, S., O'Hara, D.M., Corbi-Verge, C., Perez-Riba, A., Fujisawa, K., Kapadia, M., Chau, H., Albanese, F., Pawar, G., De Snoo, M.L., et al., 2023. Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson's disease. Nat. Commun. 14, 2150.
    Nithianandam, V., Chien, C.T., 2018. Actin blobs prefigure dendrite branching sites. J. Cell Biol. 217, 3731-3746.
    Noguchi, J., Hayama, T., Watanabe, S., Ucar, H., Yagishita, S., Takahashi, N., Kasai, H., 2016. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines. Sci. Rep. 6, 32897.
    Parker, S.S., Ly, K.T., Grant, A.D., Sweetland, J., Wang, A.M., Parker, J.D., Roman, M.R., Saboda, K., Roe, D.J., Padi, M., et al., 2023. EVL and MIM/MTSS1 regulate actin cytoskeletal remodeling to promote dendritic filopodia in neurons. J. Cell Biol. 222, e202106081.
    Peng, Y., Lee, J., Rowland, K., Wen, Y.H., Hua, H., Carlson, N., Lavania, S., Parrish, J.Z., Kim, M.D., 2015. Regulation of dendrite growth and maintenance by exocytosis. J. Cell Sci. 128, 4279-4292.
    Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.E., Woolfrey, K.M., 2011. Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285-293.
    Puram, S.V., Bonni, A., 2013. Cell-intrinsic drivers of dendrite morphogenesis. Development 140, 4657-4671.
    Quassollo, G., Wojnacki, J., Salas, D.A., Gastaldi, L., Marzolo, M.P., Conde, C., Bisbal, M., Couve, A., Caceres, A., 2015. A RhoA signaling pathway regulates dendritic Golgi outpost formation. Curr. Biol. 25, 971-982.
    Ritzenthaler, S., Suzuki, E., Chiba, A., 2000. Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nat. Neurosci. 3, 1012-1017.
    Rolls, M.M., Satoh, D., Clyne, P.J., Henner, A.L., Uemura, T., Doe, C.Q., 2007. Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev. 2, 7.
    Rosario, M., Schuster, S., Juttner, R., Parthasarathy, S., Tarabykin, V., Birchmeier, W., 2012. Neocortical dendritic complexity is controlled during development by NOMA-GAP-dependent inhibition of Cdc42 and activation of cofilin. Genes Dev. 26, 1743-1757.
    Rosso, S.B., Sussman, D., Wynshaw-Boris, A., Salinas, P.C., 2005. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat. Neurosci. 8, 34-42.
    Rui, M., Bu, S., Chew, L.Y., Wang, Q., Yu, F., 2020a. The membrane protein Raw regulates dendrite pruning via the secretory pathway. Development 147, dev191155.
    Rui, M., Kong, W., Wang, W., Zheng, T., Wang, S., Xie, W., 2023. Droj2 facilitates somatosensory neurite sculpting via GTP-Binding protein Arf102F in Drosophila. Int. J. Mol. Sci. 24, 13213.
    Rui, M., Ng, K.S., Tang, Q., Bu, S., Yu, F., 2020b. Protein phosphatase PP2A regulates microtubule orientation and dendrite pruning in Drosophila. EMBO Rep. 21, e48843.
    Sadoul, R., Laporte, M.H., Chassefeyre, R., Chi, K.I., Goldberg, Y., Chatellard, C., Hemming, F.J., Fraboulet, S., 2018. The role of ESCRT during development and functioning of the nervous system. Semin. Cell Dev. Biol. 74, 40-49.
    Sakakibara, A., Ando, R., Sapir, T., Tanaka, T., 2013. Microtubule dynamics in neuronal morphogenesis. Open Biol. 3, 130061.
    Sanal, N., Keding, L., Gigengack, U., Michalke, E., Rumpf, S., 2023. TORC1 regulation of dendrite regrowth after pruning is linked to actin and exocytosis. PLoS Genet. 19, e1010526.
    Satoh, D., Sato, D., Tsuyama, T., Saito, M., Ohkura, H., Rolls, M.M., Ishikawa, F., Uemura, T., 2008. Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nat. Cell Biol. 10, 1164-1171.
    Schwede, M., Garbett, K., Mirnics, K., Geschwind, D.H., Morrow, E.M., 2014. Genes for endosomal NHE6 and NHE9 are misregulated in autism brains. Mol. Psychiatry 19, 277-279.
    Schwenk, B.M., Lang, C.M., Hogl, S., Tahirovic, S., Orozco, D., Rentzsch, K., Lichtenthaler, S.F., Hoogenraad, C.C., Capell, A., Haass, C., et al., 2014. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO J. 33, 450-467.
    Sept, D., Baker, N.A., McCammon, J.A., 2003. The physical basis of microtubule structure and stability. Protein Sci. 12, 2257-2261.
    Shibata, Y., Hu, J.J., Kozlov, M.M., Rapoport, T.A., 2009. Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev. Biol. 25, 329-354.
    Sturner, T., Castro, A.F., Philipps, M., Cuntz, H., Tavosanis, G., 2022. The branching code: a model of actin-driven dendrite arborization. Cell Rep. 39, 110746.
    Sturner, T., Tatarnikova, A., Mueller, J., Schaffran, B., Cuntz, H., Zhang, Y., Nemethova, M., Bogdan, S., Small, V., Tavosanis, G., 2019. Transient localization of the Arp2/3 complex initiates neuronal dendrite branching. Development 146, dev171397.
    Stone, M.C., Roegiers, F., Rolls, M.M., 2008. Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol. Biol. Cell 19, 4122-4129.
    Suarez, C., Carroll, R.T., Burke, T.A., Christensen, J.R., Bestul, A.J., Sees, J.A., James, M.L., Sirotkin, V., Kovar, D.R., 2015. Profilin regulates F-Actin network homeostasis by favoring Formin over Arp2/3 complex. Dev. Cell 32, 43-53.
    Sundaramoorthy, V., Sultana, J.M., Atkin, J.D., 2015. Golgi fragmentation in amyotrophic lateral sclerosis, an overview of possible triggers and consequences. Front. Neurosci. 9, 400.
    Sundararajan, L., Stern, J., Miller, D.M., 2019. Mechanisms that regulate morphogenesis of a highly branched neuron in C. elegans. Dev. Biol. 451, 53-67.
    Swope, R.D., Hertzler, J.I., Stone, M.C., Kothe, G.O., Rolls, M.M., 2022. The exocyst complex is required for developmental and regenerative neurite growth in vivo. Dev. Biol. 492, 1-13.
    Sztul, E., Lupashin, V., 2006. Role of tethering factors in secretory membrane traffic. Am. J. Physiol. Cell Physiol. 290, C11-C26.
    Tada, T., Sheng, M., 2006. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95-101.
    Takahashi, S., Kubo, K., Waguri, S., Yabashi, A., Shin, H.W., Katoh, Y., Nakayama, K., 2012. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J. Cell Sci. 125, 4049-4057.
    Tan, J.Y.K., Chew, L.Y., Juhasz, G., Yu, F., 2024. Interplay between autophagy and CncC regulates dendrite pruning in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 121, e2310740121.
    Tang, L.T.H., Diaz-Balzac, C.A., Rahman, M., Ramirez-Suarez, N.J., Salzberg, Y., Lazaro-Pena, M.I., Bulow, H.E., 2019. TIAM-1/GEF can shape somatosensory dendrites independently of its GEF activity by regulating F-actin localization. Elife 8, e38949.
    Tang, Q., Rui, M., Bu, S., Wang, Y., Chew, L.Y., Yu, F., 2020. A microtubule polymerase is required for microtubule orientation and dendrite pruning in Drosophila. EMBO J. 39, e103549.
    Taylor, C.A., Yan, J., Howell, A.S., Dong, X.T., Shen, K., 2015. RAB-10 regulates dendritic branching by balancing dendritic transport. PLoS Genet. 11, e1005695.
    Tenenbaum, C.M., Misra, M., Alizzi, R.A., Gavis, E.R., 2017. Enclosure of dendrites by epidermal cells restricts branching and permits coordinated development of spatially overlapping sensory neurons. Cell Rep. 20, 3043-3056.
    Threadgill, R., Bobb, K., Ghosh, A., Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 1997, 19, 625-634.
    Velarde, S.B., Quevedo, A., Estella, C., Baonza, A., 2021. Dpp and Hedgehog promote the glial response to neuronal apoptosis in the developing Drosophila visual system. PLoS Biol. 19, e3001367.
    Vergara, D., Ferraro, M.M., Cascione, M., del Mercato, L.L., Leporatti, S., Ferretta, A., Tanzarella, P., Pacelli, C., Santino, A., Maffia, M., et al., 2015. Cytoskeletal alterations and biomechanical properties of mutant human primary fibroblasts. Cell Biochem. Biophys. 71, 1395-1404.
    Vita, D.J., Broadie, K., 2017. ESCRT-III membrane trafficking misregulation contributes to fragile X syndrome synaptic defects. Sci. Rep. 7, 8683.
    Walia, K., Sharma, A., Paul, S., Chouhan, P., Kumar, G., Ringe, R., Sharma, M., Tuli, A., 2024. SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle. Nat. Commun. 15, 2053.
    Wang, J.Q., Daniszewski, M., Hao, M.M., Hernandez, D., Pebay, A., Gleeson, P.A., Fourriere, L., 2023. Organelle mapping in dendrites of human iPSC-derived neurons reveals dynamic functional dendritic Golgi structures. Cell Rep. 42, 112709.
    Wang, Q., Wang, Y., Yu, F., 2018. Yif1 associates with Yip1 on Golgi and regulates dendrite pruning in sensory neurons during Drosophila metamorphosis. Development 145, dev164475.
    Wang, X.H., Liu, D.B., Wei, F.Z., Li, Y., Wang, X.F., Li, L.J., Wang, G., Zhang, S.L., Zhang, L., 2020. Stress-sensitive protein Rac1 and its involvement in neurodevelopmental disorders. Neural Plast. 2020, 8894372.
    Wang, Y., Rui, M., Tang, Q., Bu, S., Yu, F., 2019. Patronin governs minus-end-out orientation of dendritic microtubules to promote dendrite pruning in Drosophila. Elife 8, e39964.
    Wang, Y., Zhang, H., Shi, M., Liou, Y.C., Lu, L., Yu, F., 2017. Sec71 functions as a GEF for the small GTPase Arf1 to govern dendrite pruning of Drosophila sensory neurons. Development 144, 1851-1862.
    Wang, Z., Edwards, J.G., Riley, N., Provance Jr, D.W., Karcher, R., Li, X.D., Davison, I.G., Ikebe, M., Mercer, J.A., Kauer, J.A., et al., 2008. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135, 535-548.
    Waters, M.G., Clary, D.O., Rothman, J.E., 1992. A novel 115-kD peripheral membrane-protein is required for intercisternal transport in the Golgi stack. J. Cell Biol. 118, 1015-1026.
    Welz, T., Wellbourne-Wood, J., Kerkhoff, E., 2014. Orchestration of cell surface proteins by Rab11. Trends. Cell. Biol. 24, 407-415.
    West, R.J.H., Lu, Y.B., Marie, B., Gao, F.B., Sweeney, S.T., 2015. Rab8, POSH, and TAK1 regulate synaptic growth in a Drosophila model of frontotemporal dementia. J. Cell Biol. 208, 931-947.
    Wolterhoff, N., Gigengack, U., Rumpf, S., 2020. PP2A phosphatase is required for dendrite pruning via actin regulation in Drosophila. EMBO Rep. 21, e48870.
    Xu, W., Fang, F., Ding, J.Q., Wu, C.B., 2018. Dysregulation of Rab5-mediated endocytic pathways in Alzheimer's disease. Traffic 19, 253-262.
    Yalgin, C., Ebrahimi, S., Delandre, C., Yoong, L.F., Akimoto, S., Tran, H., Amikura, R., Spokony, R., Torben-Nielsen, B., White, K.P., et al., 2015. Centrosomin represses dendrite branching by orienting microtubule nucleation. Nat. Neurosci. 18, 1437-1445.
    Yan, M.M., Tang, L., Dai, L.J., Lei, C.T., Xiong, M., Zhang, X.Y., He, M.Y., Tian, Y., Xiong, J., Ke, W., et al., 2023. Cofilin promotes tau pathology in Alzheimer's disease. Cell Rep. 42, 112138.
    Yap, C.C., Digilio, L., McMahon, L.P., Garcia, A.D.R., Winckler, B., 2018. Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J. Cell Biol. 217, 3141-3159.
    Yap, C.C., Mason, A.J., Winckler, B., 2022. Dynamics and distribution of endosomes and lysosomes in dendrites. Curr. Opin. Neurobiol. 74, 102537.
    Ye, B., Zhang, Y., Song, W., Younger, S.H., Jan, L.Y., Jan, Y.N., 2007. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717-729.
    Yu, I.M., Hughson, F.M., 2010. Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26, 137-156.
    Zamboni, V., Jones, R., Umbach, A., Ammoni, A., Passafaro, M., Hirsch, E., Merlo, G.R., 2018. Rho GTPases in intellectual disability: from genetics to therapeutic opportunities. Int. J. Mol. Sci. 19, 1821.
    Zhang, H., Wang, Y., Wong, J.J., Lim, K.L., Liou, Y.C., Wang, H., Yu, F., 2014. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Dev. Cell 30, 463-478.
    Zhang, Y., Sung, H.H., Ziegler, A.B., Wu, Y.C., Viais, R., Sanchez-Huertas, C., Kilo, L., Agircan, F.G., Cheng, Y.J., Mouri, K., et al., 2024. Augmin complex activity finetunes dendrite morphology through non-centrosomal microtubule nucleation in vivo. J. Cell Sci. 137, jcs261512.
    Zhu, M.J., Xiao, B., Xue, T., Qin, S.F., Ding, J.Y., Wu, Y., Tang, Q.Q., Huang, M.F., Zhao, N., Ye, Y.S., et al., 2023. Cdc42GAP deficiency contributes to the Alzheimer's disease phenotype. Brain 146, 4350-4365.
    Ziv, N.E., Smith, S.J., 1996. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91-102.
    Zou, W., Dong, X.T., Broederdorf, T.R., Shen, A., Kramer, D.A., Shi, R., Liang, X., Miller, D.M., Xiang, Y.K., Yasuda, R., et al., 2018. A dendritic guidance receptor complex brings together distinct actin regulators to drive efficient F-actin assembly and branching. Dev. Cell 45, 362-375.
    Zou, W., Yadav, S., DeVault, L., Jan, Y.N., Sherwood, D.R., 2015. RAB-10-dependent membrane transport is required for dendrite arborization. PLoS Genet. 11, e1005484.
    Zuo, X.F., Zhang, J., Zhang, Y., Hsu, S.C., Zhou, D.G., Guo, W., 2006. Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat. Cell Biol. 8, 1383-1388.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return