9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 6
Jun.  2025
Turn off MathJax
Article Contents

Near-complete de novo genome assemblies of tomato (Solanum lycopersicum) determinate cultivars Micro-Tom and M82

doi: 10.1016/j.jgg.2024.06.006
Funds:

This work was supported by grants from the Shanghai Agriculture Applied Technology Development Program (2021-02-08-00-12-F00792) and Projects of International Cooperation and Exchanges NSFC (3201101910).

  • Received Date: 2024-04-12
  • Accepted Date: 2024-06-11
  • Rev Recd Date: 2024-06-09
  • Available Online: 2025-07-11
  • Publish Date: 2024-06-17
  • loading
  • Alonge, M., Lebeigle, L., Kirsche, M., Jenike, K., Ou, S., Aganezov, S., Wang, X., Lippman, Z., Schatz, M., Soyk, S., 2022. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 23, 258.
    Andolfo, G., Ruocco, M., Di Donato, A., Frusciante, L., Lorito, M., Scala, F., Ercolano, M., 2015. Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC Plant Biol. 15, 51.
    Deng, Y., Liu, S., Zhang, Y., Tan, J., Li, X., Chu, X., Xu, B., Tian, Y., Sun, Y., Li, B., et al., 2022. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol. Plant 15, 1268-1284.
    Dhara, A., Raichaudhuri, A., 2021. ABCG transporter proteins with beneficial activity on plants. Phytochemistry 184, 112663.
    Emmanuel, E., Levy, A., 2002. Tomato mutants as tools for functional genomics. Curr. Opin. Plant Biol. 5, 112-117.
    Grafe, K., Schmitt, L., 2020. The ABC transporter G subfamily in Arabidopsis thaliana. J. Exp. Bot. 72, 92-106.
    Hosmani, P., Flores-Gonzalez, M., Geest, H., Maumus, F., Bakker, L., Schijlen, E., Haarst, J., Cordewener, J., Sanchez-Perez, G., Peters, S., et al., 2019. An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. bioRxiv doi: 10.1101/767764.
    Kimura, S., Sinha, N., 2008. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. CSH Protoc. doi: 10.1101/pdb.emo105.
    Li, K., Jiang, W., Hui, Y., Kong, M., Feng, L., Gao, L., Li, P., Lu, S., 2021. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Mol. Plant 14, 1745-1756.
    Li, N., He, Q., Wang J., Wang B., Zhao J., Huang S., Yang T., Tang Y., Yang S., Aisimutuola P., et al., 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 55, 1-9.
    Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y., Levy, A., 2002. A new model system for tomato genetics. Plant J. 12, 1465-1472.
    Ofori, P., Mizuno, A., Suzuki, M., Martinoia, E., Reuscher, S., Aoki, K., Shibata, D., Otagaki, S., Matsumoto, S., Shiratake, K., 2018. Genome-wide analysis of ATP binding cassette (ABC) transporters in tomato. PLoS One 13, e0200854.
    Sahu, SK., Liu, H., 2023. Long-read sequencing (method of the year 2022): the way forward for plant omics research. Mol. Plant 16, 791-793.
    Sato, S., Tabata, S., Hirakawa, H., Klein, Lankhorst R., Jong, H., Van, H., Datema, E., Smit, S., Schijlen, EGWM., Van, Haarst J., 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641.
    Shirasawa, K., Ariizumi, T., 2023. Near-complete genome assembly of tomato (Solanum lycopersicum) cultivar Micro-Tom. bioRxiv doi: 10.1101/2023.10.26.564283.
    Wang, P., Wang, F., 2022. A proposed metric set for evaluation of genome assembly quality. Trends Genet. 39, 175-186.
    Xue, J., Fan, H., Zeng, Z., Zhou, Y., Shuaiya, H., Li, S., Cheng, Y., Meng, X., Chen, F., Shao, Z., et al., 2023. Comprehensive regulatory networks for tomato organ development based on the genome and RNAome of MicroTom tomato. Hortic. Res. 10, uhad147.
    Yang, X., Zhang, L., Guo, X., Xu, J., Zhang, K., Yang, Y., Yang, Y., Jian, Y., Dong, D., Huang, S., et al., 2022. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions. Mol. Plant 16, 314-317.
    Yue, J., Chen, Q., Wang, Y., Zhang, L., Ye, C., Wang, X., Shuo, C., Lin, Y., Huang, W., Xian, H., et al., 2022. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis. Hortic. Res. 10, uhac264.
    Zhou, Y., Zhang, Z., Bao, Z., Li, H., Lyu, Y., Zan, Y., Wu, Y., Cheng, L., Fang, Y., Wu, K., et al., 2022. Graph pangenome captures missing heritability and empowers tomato breeding. Nature 606, 527-534.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return