8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 10
Oct.  2024
Turn off MathJax
Article Contents

miR-504 knockout regulates tumor cell proliferation and immune cell infiltration to accelerate oral cancer development

doi: 10.1016/j.jgg.2024.06.002
Funds:

This work was supported by the National Natural Science Foundation of China (31970513 to G.S.), the Central Government’s Guide to Local Science and Technology Development Fund (YDZJSX2022A060 to G.S.), the special funds for Science and Technology Innovation Teams of Shanxi Province (202204051002032 to G.S.), the Shanxi Province Higher Education “BillionProject” Science and Technology Guidance Project (BYJL016 to G.S.), and the Natural Science Foundation of Shanxi Province (20210302124093 to J.G.).

  • Received Date: 2024-02-26
  • Accepted Date: 2024-06-02
  • Rev Recd Date: 2024-05-29
  • Available Online: 2025-06-06
  • Publish Date: 2024-06-11
  • miR-504 plays a pivotal role in the progression of oral cancer. However, the underlying mechanism remains elusive in vivo. Here, we find that miR-504 is significantly down-regulated in oral cancer patients. We generate miR-504 knockout mice (miR-504-/-) using CRISPR/Cas9 technology to investigate its impact on the malignant progression of oral cancer under exposure to 4-Nitroquinoline N-oxide (4NQO). We show that the deletion of miR-504 does not affect phenotypic characteristics, body weight, reproductive performance, and survival in mice, but results in changes in the blood physiological and biochemical indexes of the mice. Moreover, with 4NQO treatment, miR-504-/- mice exhibit more pronounced pathological changes characteristic of oral cancer. RNA sequencing shows that the differentially expressed genes observed in samples from miR-504-/- mice with oral cancer are involved in regulating cell metabolism, cytokine activation, and lipid metabolism-related pathways. Additionally, these differentially expressed genes are significantly enriched in lipid metabolism pathways that influence immune cell infiltration within the tumor microenvironment, thereby accelerating tumor development progression. Collectively, our results suggest that knockout of miR-504 accelerates malignant progression in 4NQO-induced oral cancer by regulating tumor cell proliferation and lipid metabolism, affecting immune cell infiltration.
  • loading
  • Balakittnen, J., Weeramange, C.E., Wallace, D.F., Duijf, P.H.G., Cristino, A.S., Kenny L, Vasani S, Punyadeera C., 2023. Noncoding RNAs in oral cancer. Wiley Interdiscip. Rev. RNA 14, e1754.
    Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D., Lu, Z., 2021. Lipid metabolism and cancer. J. Exp. Med. 218, e20201606.
    Bisetto, S., Whitaker-Menezes, D., Wilski, N.A., Tuluc, M., Curry, J., Zhan, T., Snyder, C.M., Martinez-Outschoorn, U.E., Philp, N.J., 2018. Monocarboxylate transporter 4 (MCT4) knockout mice have attenuated 4NQO induced carcinogenesis; a role for MCT4 in driving oral squamous cell cancer. Front. Oncol. 8, 324.
    Chen, Y.F., Yang, C.C., Kao, S.Y., Liu, C.J., Lin, S.C., Chang, K.W., 2016. MicroRNA-211 enhances the oncogenicity of carcinogen-Induced oral Carcinoma by repressing TCF12 and increasing antioxidant activity. Cancer Res. 76, 4872-4886.
    Cheng, M.L., Yang, C.H., Wu, P.T., Li, Y.C., Sun, H.W., Lin, G., Ho, H.Y., 2023. Malonyl-CoA accumulation as a compensatory cytoprotective mechanism in cardiac cells in response to 7-ketocholesterol-induced growth retardation. Int. J. Mol. Sci. 24, 4418.
    Dar, G.M., Agarwal, S., Kumar, A., Nimisha, Apurva, Sharma, A.K., Verma, R., Sattar, R.S.A., Ahmad, E., Ali, A., Mahajan, B., Saluja, S.S., Meher, R., 2022. A non-invasive miRNA-based approach in early diagnosis and therapeutics of oral cancer. Crit. Rev. Oncol. Hematol. 180, 103850.
    Gao, W., Wang, F., Lu, Y., Wen, C., Sun, J., Wu, H., 2022. miR-504 promotes cell proliferation and metastasis by targeting BRMS1 in breast cancer. Panminerva Med. 64, 415-416.
    Jang, T.H., Huang, W.C., Tung, S.L., Lin, S.C., Chen, P.M., Cho, C.Y., Yang, Y.Y., Yen, T.C., Lo, G.H., Chuang, S.E., et al., 2022. microRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J. Biomed. Sci., 29, 42.
    Jayaraman, S., Pazhani, J., PriyaVeeraraghavan, V., Raj, A.T., Somasundaram, D.B., Patil, S., 2022. PCNA and Ki67: Prognostic proliferation markers for oral cancer. Oral Oncol. 130,105943.
    Jin, H.R., Wang, J., Wang, Z.J., Xi, M.J., Xia, B.H., Deng, K., Yang, J.L., 2023. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J. Hematol. Oncol. 16, 103.
    Kamala, K.A., Kanetkar, S.R., Datkhile, K.D., Sankethguddad, S., 2022. Expression of Ki67 biomarker in oral submucous fibrosis with clinico-pathological correlations: a prospective study. Asian Pac. J. Cancer Prev. 23, 253-259.
    Khayatan, D., Hussain, A., Tebyaniyan, H., 2023. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet. Med. Sci. 9, 1833-1847.
    Kikkawa, N., Kinoshita, T., Nohata, N., Hanazawa, T., Yamamoto, N., Fukumoto, I., Chiyomaru, T., Enokida, H., Nakagawa, M., Okamoto, Y., et al., 2014. microRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma. Int. J. Oncol. 44, 2085-2092.
    Kono, M., Saito, S., Egloff, A.M., Allen, C.T., Uppaluri, R., 2022. The mouse oral carcinoma (MOC) model: A 10-year retrospective on model development and head and neck cancer investigations. Oral Oncol. 132, 106012.
    Kumar, R., Mishra, A., Gautam, P., Feroz, Z., Vijayaraghavalu, S., Likos, E.M., Shukla, G.C., Kumar, M., 2022. Metabolic pathways, enzymes, and metabolites: opportunities in cancer therapy. Cancers (Basel) 14, 5268.
    Lai, Y.H., Liu, H., Chiang, W.F., Chen, T.W., Chu, L.J., Yu, J.S., Chen, S.J., Chen, H.C., Tan, B.C., 2018. miR-31-5p-ACOX1 axis enhances tumorigenic fitness in oral squamous cell carcinoma via the promigratory prostaglandin E2. Theranostics 8, 486-504.
    Ling, Q., Mao, S., Pan, J., Wei, W., Qian, Y., Li, F., Huang, S., Ye, W., Lin, X., Huang, J., et al., 2023. CPT1B, a metabolic molecule, is also an independent risk factor in CN-AML. Cancer Biomark. 37, 133-145.
    Listiyana, A., Kristanti, R.A., Aishaqeena, A.M.F., Ahmad, A.P.M., Astari, L.F., Indradmojo, C., Inayatilah, F.R., 2023. Effect of ethanol extract from Chrysanthemum cinerariifolium leaves on Ki-67 proliferation and dysplasia severity in a rat model of oral squamous cell carcinoma. Open Vet. J. 13, 99-107.
    Liu, Q., Guan, Y., Li, Z., Wang, Y., Liu, Y., Cui, R., Wang, Y., 2019. miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt-β-catenin pathway. J. Exp. Clin. Cancer Res. 38, 358.
    Liu, Z., Zhang, W., Zhang, B., Chen, S., Ling, C., 2022. MiR-504-3p has tumor-suppressing activity and decreases IFITM1 expression in non-small cell lung cancer cells. Genet. Test. Mol. Biomarkers 26, 351-359.
    Loeuillard, E., Fischbach, S.R., Gores, G.J., Rizvi, S., 2019. Animal models of cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 982-992.
    Luo, J.J., Young, C.D., Zhou, H.M., Wang, X.J. Mouse models for studying oral cancer: impact in the era of cancer immunotherapy. J. Dent. Res. 2018, 97, 683-690.
    Maruyama, N., Umikawa, M., Matsumoto, H., Maruyama, T., Nishihara, K., Nakasone, T., Matayoshi, A., Goto, T., Hirano, F., Arasaki, A., et al., 2020. miR-935 inhibits oral squamous cell carcinoma and targets inositol polyphosphate-4-phosphatase type IA (INPP4A). Anticancer Res. 40, 6101-6113.
    Murugan, A.K., Munirajan, A.K., Alzahrani, A.S., 2016. MicroRNAs: modulators of the Ras oncogenes in oral cancer. J. Cell. Physiol. 231, 1424-1431.
    Mustansar, T., Mirza, T., Hussain, M., 2023. RAS gene mutations and histomorphometric measurements in oral squamous cell carcinoma. Biotech. Histochem. 98, 382-390.
    Miao, J., Lan, T., Guo, H., Wang, J., Zhang, G., Wang, Z., Yang, P., Li, H., Zhang, C., Wang, Y., Li, X.M., Miao, M. 2023. Characterization of SHARPIN knockout Syrian hamsters developed using CRISPR/Cas9 system. Animal. Model. Exp. Med. 6, 489-498.
    Nemeth, K., Bayraktar, R., Ferracin, M., Calin, G.A., 2024. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 25, 211-232.
    Odell, E., Kujan, O., Warnakulasuriya, S., Sloan, P., 2021. Oral epithelial dysplasia: Recognition, grading and clinical significance. Oral Dis. 27, 1947-1976.
    Poosarla, C., Ramesh, M., Ramesh, K., Gudiseva, S., Bala, S., 2015. Sundar, M., Proliferating cell nuclear Antigen in premalignancy and oral squamous cell carcinoma. J. Clin. Diagn. Res. 9, ZC39-41.
    Quan, H., Li, B., Yang, J., 2018. microRNA-504 functions as a tumor suppressor in hepatocellular carcinoma through inhibiting Frizzled-7-mediated-Wnt/β-catenin signaling. Biomed Pharmacother. 107, 754-762.
    Shrestha, A., Keshwar, S., Raut, T., 2021. Evaluation of mast cells in oral potentially malignant disorders and oral squamous cell carcinoma. Int. J. Dent. 2021, 5609563.
    Skalova, A., Bradova, M., Michal, M. Jr., Mosaieby, E., Klubickova, N., Vanecek, T., Leivo, I., 2024. Molecular pathology in diagnosis and prognostication of head and neck tumors. Virchows Arch. 484, 215-231.
    Tahmasebi, E., Alikhani, M., Yazdanian, A., Yazdanian, M., Tebyanian, H., Seifalian, A., 2020. The current markers of cancer stem cell in oral cancers. Life Sci. 249, 117483.
    Tang, W., Tang, H., Xu, S., Yu, H., Chen, Z., 2024. Transcription factor MITF inhibits the transcription of CPT1B to regulate fatty acid β-oxidation and thus affects stemness in lung adenocarcinoma cells. Pharmacology 109, 52-64.
    Tashiro, K., Oikawa, M., Miki, Y., Takahashi, T., Kumamoto, H., 2020. Immunohistochemical assessment of growth factor signaling molecules: MAPK, Akt, and STAT3 pathways in oral epithelial precursor lesions and squamous cell carcinoma. Odontology. 108, 91-101.
    Tseng, S.H., Yang, C.C., Yu, E.H., Chang, C., Lee, Y.S., Liu, C.J., Chang, K.W., Lin, S.C., 2015. K14-EGFP-miR-31 transgenic mice have high susceptibility to chemical-induced squamous cell tumorigenesis that is associating with Ku80 repression. Int. J. Cancer 136, 1263-1275.
    Vered, M., Yarom, N., Dayan, D., 2005. 4NQO oral carcinogenesis: animal models, molecular markers and future expectations. Oral Oncol. 41, 337-339.
    Wang, X., Chang, K., Gao, J., Wei, J., Xu, G., Xiao, L., Song, G., 2020. microRNA-504 functions as a tumor suppressor in oral squamous cell carcinoma through inhibiting cell proliferation, migration and invasion by targeting CDK6. Int. J. Biochem. Cell. Biol. 119, 105663.
    Wang, X., Song, H., Liang, J., Jia, Y., Zhang, Y., 2022. Abnormal expression of HADH, an enzyme of fatty acid oxidation, affects tumor development and prognosis (Review). Mol. Med. Rep. 26, 355.
    Xu, G.Q., Li, L.H., Wei, J.N., Xiao, L.F., Wang, X.T., Pang, W.B., Yan, X.Y., Chen, Z.Y., Song, G.H., 2019. Identification and profiling of microRNAs expressed in oral buccal mucosa squamous cell carcinoma of Chinese hamster. Sci. Rep. 9, 15616.
    Yao, L.X., Liu, J., Xu, L., 2019. miR-610 functions as a tumor suppressor in oral squamous cell carcinoma by directly targeting AGK. Eur. Rev. Med. Pharmacol. Sci. 23, 187-197.
    Yu, W., Lei, Q., Yang, L., Qin, G., Liu, S., Wang, D., Ping, Y., Zhang, Y., 2021. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J. Hematol. Oncol. 14, 187.
    Yuan, Y., Li, H., Pu, W., Chen, L., Guo, D., Jiang, H., He, B., Qin, S., Wang, K., Li, N., et al., 2022. Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci. 65, 236-279.
    Zhang, Y., Yong, H., Fu, J., Gao, G., Shi, H., Zhou, X., Fu, M., 2021. miR-504 promoted gastric cancer cell proliferation and inhibited cell apoptosis by targeting RBM4. J. Immunol. Res. 2021, 5555950.
    Zhao, X., Zhang, J., Liu, J., Chen, Q., Cai, C., Miao, X., Wu, T., Cheng, X., 2023. Identification of mitochondrial-related signature and molecular subtype for the prognosis of osteosarcoma. Aging (Albany NY) 15, 12794-12816.
    Zhou, L., Luo, Y., Liu, Y., Zeng, Y., Tong, J., Li, M., Hou, Y., Du, K., Qi, Y., Pan, W., et al., 2023. Fatty acid oxidation mediated by malonyl-CoA decarboxylase represses renal cell carcinoma progression. Cancer Res. 83, 3920-3939.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return