Balakittnen, J., Weeramange, C.E., Wallace, D.F., Duijf, P.H.G., Cristino, A.S., Kenny L, Vasani S, Punyadeera C., 2023. Noncoding RNAs in oral cancer. Wiley Interdiscip. Rev. RNA 14, e1754.
|
Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D., Lu, Z., 2021. Lipid metabolism and cancer. J. Exp. Med. 218, e20201606.
|
Bisetto, S., Whitaker-Menezes, D., Wilski, N.A., Tuluc, M., Curry, J., Zhan, T., Snyder, C.M., Martinez-Outschoorn, U.E., Philp, N.J., 2018. Monocarboxylate transporter 4 (MCT4) knockout mice have attenuated 4NQO induced carcinogenesis; a role for MCT4 in driving oral squamous cell cancer. Front. Oncol. 8, 324.
|
Chen, Y.F., Yang, C.C., Kao, S.Y., Liu, C.J., Lin, S.C., Chang, K.W., 2016. MicroRNA-211 enhances the oncogenicity of carcinogen-Induced oral Carcinoma by repressing TCF12 and increasing antioxidant activity. Cancer Res. 76, 4872-4886.
|
Cheng, M.L., Yang, C.H., Wu, P.T., Li, Y.C., Sun, H.W., Lin, G., Ho, H.Y., 2023. Malonyl-CoA accumulation as a compensatory cytoprotective mechanism in cardiac cells in response to 7-ketocholesterol-induced growth retardation. Int. J. Mol. Sci. 24, 4418.
|
Dar, G.M., Agarwal, S., Kumar, A., Nimisha, Apurva, Sharma, A.K., Verma, R., Sattar, R.S.A., Ahmad, E., Ali, A., Mahajan, B., Saluja, S.S., Meher, R., 2022. A non-invasive miRNA-based approach in early diagnosis and therapeutics of oral cancer. Crit. Rev. Oncol. Hematol. 180, 103850.
|
Gao, W., Wang, F., Lu, Y., Wen, C., Sun, J., Wu, H., 2022. miR-504 promotes cell proliferation and metastasis by targeting BRMS1 in breast cancer. Panminerva Med. 64, 415-416.
|
Jang, T.H., Huang, W.C., Tung, S.L., Lin, S.C., Chen, P.M., Cho, C.Y., Yang, Y.Y., Yen, T.C., Lo, G.H., Chuang, S.E., et al., 2022. microRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J. Biomed. Sci., 29, 42.
|
Jayaraman, S., Pazhani, J., PriyaVeeraraghavan, V., Raj, A.T., Somasundaram, D.B., Patil, S., 2022. PCNA and Ki67: Prognostic proliferation markers for oral cancer. Oral Oncol. 130,105943.
|
Jin, H.R., Wang, J., Wang, Z.J., Xi, M.J., Xia, B.H., Deng, K., Yang, J.L., 2023. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J. Hematol. Oncol. 16, 103.
|
Kamala, K.A., Kanetkar, S.R., Datkhile, K.D., Sankethguddad, S., 2022. Expression of Ki67 biomarker in oral submucous fibrosis with clinico-pathological correlations: a prospective study. Asian Pac. J. Cancer Prev. 23, 253-259.
|
Khayatan, D., Hussain, A., Tebyaniyan, H., 2023. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet. Med. Sci. 9, 1833-1847.
|
Kikkawa, N., Kinoshita, T., Nohata, N., Hanazawa, T., Yamamoto, N., Fukumoto, I., Chiyomaru, T., Enokida, H., Nakagawa, M., Okamoto, Y., et al., 2014. microRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma. Int. J. Oncol. 44, 2085-2092.
|
Kono, M., Saito, S., Egloff, A.M., Allen, C.T., Uppaluri, R., 2022. The mouse oral carcinoma (MOC) model: A 10-year retrospective on model development and head and neck cancer investigations. Oral Oncol. 132, 106012.
|
Kumar, R., Mishra, A., Gautam, P., Feroz, Z., Vijayaraghavalu, S., Likos, E.M., Shukla, G.C., Kumar, M., 2022. Metabolic pathways, enzymes, and metabolites: opportunities in cancer therapy. Cancers (Basel) 14, 5268.
|
Lai, Y.H., Liu, H., Chiang, W.F., Chen, T.W., Chu, L.J., Yu, J.S., Chen, S.J., Chen, H.C., Tan, B.C., 2018. miR-31-5p-ACOX1 axis enhances tumorigenic fitness in oral squamous cell carcinoma via the promigratory prostaglandin E2. Theranostics 8, 486-504.
|
Ling, Q., Mao, S., Pan, J., Wei, W., Qian, Y., Li, F., Huang, S., Ye, W., Lin, X., Huang, J., et al., 2023. CPT1B, a metabolic molecule, is also an independent risk factor in CN-AML. Cancer Biomark. 37, 133-145.
|
Listiyana, A., Kristanti, R.A., Aishaqeena, A.M.F., Ahmad, A.P.M., Astari, L.F., Indradmojo, C., Inayatilah, F.R., 2023. Effect of ethanol extract from Chrysanthemum cinerariifolium leaves on Ki-67 proliferation and dysplasia severity in a rat model of oral squamous cell carcinoma. Open Vet. J. 13, 99-107.
|
Liu, Q., Guan, Y., Li, Z., Wang, Y., Liu, Y., Cui, R., Wang, Y., 2019. miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt-β-catenin pathway. J. Exp. Clin. Cancer Res. 38, 358.
|
Liu, Z., Zhang, W., Zhang, B., Chen, S., Ling, C., 2022. MiR-504-3p has tumor-suppressing activity and decreases IFITM1 expression in non-small cell lung cancer cells. Genet. Test. Mol. Biomarkers 26, 351-359.
|
Loeuillard, E., Fischbach, S.R., Gores, G.J., Rizvi, S., 2019. Animal models of cholangiocarcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 982-992.
|
Luo, J.J., Young, C.D., Zhou, H.M., Wang, X.J. Mouse models for studying oral cancer: impact in the era of cancer immunotherapy. J. Dent. Res. 2018, 97, 683-690.
|
Maruyama, N., Umikawa, M., Matsumoto, H., Maruyama, T., Nishihara, K., Nakasone, T., Matayoshi, A., Goto, T., Hirano, F., Arasaki, A., et al., 2020. miR-935 inhibits oral squamous cell carcinoma and targets inositol polyphosphate-4-phosphatase type IA (INPP4A). Anticancer Res. 40, 6101-6113.
|
Murugan, A.K., Munirajan, A.K., Alzahrani, A.S., 2016. MicroRNAs: modulators of the Ras oncogenes in oral cancer. J. Cell. Physiol. 231, 1424-1431.
|
Mustansar, T., Mirza, T., Hussain, M., 2023. RAS gene mutations and histomorphometric measurements in oral squamous cell carcinoma. Biotech. Histochem. 98, 382-390.
|
Miao, J., Lan, T., Guo, H., Wang, J., Zhang, G., Wang, Z., Yang, P., Li, H., Zhang, C., Wang, Y., Li, X.M., Miao, M. 2023. Characterization of SHARPIN knockout Syrian hamsters developed using CRISPR/Cas9 system. Animal. Model. Exp. Med. 6, 489-498.
|
Nemeth, K., Bayraktar, R., Ferracin, M., Calin, G.A., 2024. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 25, 211-232.
|
Odell, E., Kujan, O., Warnakulasuriya, S., Sloan, P., 2021. Oral epithelial dysplasia: Recognition, grading and clinical significance. Oral Dis. 27, 1947-1976.
|
Poosarla, C., Ramesh, M., Ramesh, K., Gudiseva, S., Bala, S., 2015. Sundar, M., Proliferating cell nuclear Antigen in premalignancy and oral squamous cell carcinoma. J. Clin. Diagn. Res. 9, ZC39-41.
|
Quan, H., Li, B., Yang, J., 2018. microRNA-504 functions as a tumor suppressor in hepatocellular carcinoma through inhibiting Frizzled-7-mediated-Wnt/β-catenin signaling. Biomed Pharmacother. 107, 754-762.
|
Shrestha, A., Keshwar, S., Raut, T., 2021. Evaluation of mast cells in oral potentially malignant disorders and oral squamous cell carcinoma. Int. J. Dent. 2021, 5609563.
|
Skalova, A., Bradova, M., Michal, M. Jr., Mosaieby, E., Klubickova, N., Vanecek, T., Leivo, I., 2024. Molecular pathology in diagnosis and prognostication of head and neck tumors. Virchows Arch. 484, 215-231.
|
Tahmasebi, E., Alikhani, M., Yazdanian, A., Yazdanian, M., Tebyanian, H., Seifalian, A., 2020. The current markers of cancer stem cell in oral cancers. Life Sci. 249, 117483.
|
Tang, W., Tang, H., Xu, S., Yu, H., Chen, Z., 2024. Transcription factor MITF inhibits the transcription of CPT1B to regulate fatty acid β-oxidation and thus affects stemness in lung adenocarcinoma cells. Pharmacology 109, 52-64.
|
Tashiro, K., Oikawa, M., Miki, Y., Takahashi, T., Kumamoto, H., 2020. Immunohistochemical assessment of growth factor signaling molecules: MAPK, Akt, and STAT3 pathways in oral epithelial precursor lesions and squamous cell carcinoma. Odontology. 108, 91-101.
|
Tseng, S.H., Yang, C.C., Yu, E.H., Chang, C., Lee, Y.S., Liu, C.J., Chang, K.W., Lin, S.C., 2015. K14-EGFP-miR-31 transgenic mice have high susceptibility to chemical-induced squamous cell tumorigenesis that is associating with Ku80 repression. Int. J. Cancer 136, 1263-1275.
|
Vered, M., Yarom, N., Dayan, D., 2005. 4NQO oral carcinogenesis: animal models, molecular markers and future expectations. Oral Oncol. 41, 337-339.
|
Wang, X., Chang, K., Gao, J., Wei, J., Xu, G., Xiao, L., Song, G., 2020. microRNA-504 functions as a tumor suppressor in oral squamous cell carcinoma through inhibiting cell proliferation, migration and invasion by targeting CDK6. Int. J. Biochem. Cell. Biol. 119, 105663.
|
Wang, X., Song, H., Liang, J., Jia, Y., Zhang, Y., 2022. Abnormal expression of HADH, an enzyme of fatty acid oxidation, affects tumor development and prognosis (Review). Mol. Med. Rep. 26, 355.
|
Xu, G.Q., Li, L.H., Wei, J.N., Xiao, L.F., Wang, X.T., Pang, W.B., Yan, X.Y., Chen, Z.Y., Song, G.H., 2019. Identification and profiling of microRNAs expressed in oral buccal mucosa squamous cell carcinoma of Chinese hamster. Sci. Rep. 9, 15616.
|
Yao, L.X., Liu, J., Xu, L., 2019. miR-610 functions as a tumor suppressor in oral squamous cell carcinoma by directly targeting AGK. Eur. Rev. Med. Pharmacol. Sci. 23, 187-197.
|
Yu, W., Lei, Q., Yang, L., Qin, G., Liu, S., Wang, D., Ping, Y., Zhang, Y., 2021. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J. Hematol. Oncol. 14, 187.
|
Yuan, Y., Li, H., Pu, W., Chen, L., Guo, D., Jiang, H., He, B., Qin, S., Wang, K., Li, N., et al., 2022. Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci. 65, 236-279.
|
Zhang, Y., Yong, H., Fu, J., Gao, G., Shi, H., Zhou, X., Fu, M., 2021. miR-504 promoted gastric cancer cell proliferation and inhibited cell apoptosis by targeting RBM4. J. Immunol. Res. 2021, 5555950.
|
Zhao, X., Zhang, J., Liu, J., Chen, Q., Cai, C., Miao, X., Wu, T., Cheng, X., 2023. Identification of mitochondrial-related signature and molecular subtype for the prognosis of osteosarcoma. Aging (Albany NY) 15, 12794-12816.
|
Zhou, L., Luo, Y., Liu, Y., Zeng, Y., Tong, J., Li, M., Hou, Y., Du, K., Qi, Y., Pan, W., et al., 2023. Fatty acid oxidation mediated by malonyl-CoA decarboxylase represses renal cell carcinoma progression. Cancer Res. 83, 3920-3939.
|