8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 10
Oct.  2024
Turn off MathJax
Article Contents

Another piece of puzzle for the human microbiome: the gut virome under dietary modulation

doi: 10.1016/j.jgg.2024.04.013
Funds:

This work was supported by the National Key Research and Development Program of China (2022YFA1304102), the National Natural Science Foundation of China (32070122, 32370053, T2341010), the Chinese Universities Scientific Fund (2023RC022), Pinduoduo-China Agricultural University Research Fund (PC2023B02015), and the 2115 Talent Development Program of China Agricultural University.

  • Received Date: 2024-03-02
  • Accepted Date: 2024-04-24
  • Rev Recd Date: 2024-04-24
  • Available Online: 2025-06-06
  • Publish Date: 2024-05-06
  • The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community and preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.
  • loading
  • Alaoui, M.A.E., Fartah, S.E., Alaoui, N., Fahime, E.M.E., Habsaoui, A., 2019. Molecular docking analysis of flavonoid compounds with HIV-1 Reverse transcriptase for the identification of potential effective inhibitors. Bioinformation 15, 646-656.
    Anderson, C.L., Sullivan, M.B., Fernando, S.C., 2017. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome 5, 155.
    Balique, F., Lecoq, H., Raoult, D., Colson, P., 2015. Can plant viruses cross the kingdom border and be pathogenic to humans? Viruses 7, 2074-2098.
    Boling, L., Cuevas, D.A., Grasis, J.A., Kang, H.S., Knowles, B., Levi, K., Maughan, H., McNair, K., Rojas, M.I., Sanchez, S.E., et al., 2020. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes 11, 721-734.
    Borodovich, T., Shkoporov, A.N., Ross, R.P., Hill, C., 2022. Phage-mediated horizontal gene transfer and its implications for the human gut microbiome. Gastroenterology Report 10, goac012.
    Breitbart, M., Haynes, M., Kelley, S., Angly, F., Edwards, R.A., Felts, B., Mahaffy, J.M., Mueller, J., Nulton, J., Rayhawk, S., et al., 2008. Viral diversity and dynamics in an infant gut. Res Microbiol 159, 367-373.
    Breitbart, M., Hewson, I., Felts, B., Mahaffy, J.M., Nulton, J., Salamon, P., Rohwer, F., 2003. Metagenomic Analyses of an Uncultured Viral Community from Human Feces. J Bacteriol 185, 6220-6223.
    Brussow, H., Canchaya, C., Hardt, W.-D., 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68, 560-602, table of contents.
    Camarillo-Guerrero, L.F., Almeida, A., Rangel-Pineros, G., Finn, R.D., Lawley, T.D., 2021. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098-1109.e9.
    Cao, Z., Fan, D., Sun, Y., Huang, Z., Li, Y., Su, R., Zhang, Feng, Li, Q., Yang, H., Zhang, Fen, et al., 2024. The gut ileal mucosal virome is disturbed in patients with Crohn’s disease and exacerbates intestinal inflammation in mice. Nat Commun 15, 1638.
    Cao, Z., Sugimura, N., Burgermeister, E., Ebert, M.P., Zuo, T., Lan, P., 2022. The gut virome: A new microbiome component in health and disease. EBioMedicine 81, 104113.
    Castro-Barquero, S., Ruiz-Leon, A.M., Sierra-Perez, M., Estruch, R., Casas, R., 2020. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients 12, 2983.
    Cho, I., Blaser, M.J., 2012. The human microbiome: at the interface of health and disease. Nat Rev Genet 13, 260-270.
    Clooney, A.G., Sutton, T.D.S., Shkoporov, A.N., Holohan, R.K., Daly, K.M., O’Regan, O., Ryan, F.J., Draper, L.A., Plevy, S.E., Ross, R.P., et al., 2019. Whole-Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease. Cell Host Microbe 26, 764-778.e5.
    Coughlan, S., Das, A., O’Herlihy, E., Shanahan, F., O’Toole, P.W., Jeffery, I.B., 2021. The gut virome in Irritable Bowel Syndrome differs from that of controls. Gut Microbes 13, 1-15.
    Cronin, O., Barton, W., Skuse, P., Penney, N.C., Garcia-Perez, I., Murphy, E.F., Woods, T., Nugent, H., Fanning, A., Melgar, S., et al., 2018. A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. mSystems 3, e00044-18.
    David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., et al., 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559-563.
    De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., Lionetti, P., 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107, 14691-14696.
    Dernini, S., Berry, E.M., Serra-Majem, L., La Vecchia, C., Capone, R., Medina, F.X., Aranceta-Bartrina, J., Belahsen, R., Burlingame, B., Calabrese, G., et al., 2017. Med Diet 4.0: the Mediterranean diet with four sustainable benefits. Public Health Nutr 20, 1322-1330.
    Desai, C., Handley, S.A., Rodgers, R., Rodriguez, C., Ordiz, M.I., Manary, M.J., Holtz, L.R., 2020. Growth velocity in children with Environmental Enteric Dysfunction is associated with specific bacterial and viral taxa of the gastrointestinal tract in Malawian children. PLoS Negl Trop Dis 14, e0008387.
    Dong, S., Xin, Z., He, W., Zhang, Y., Xiong, J., Wang, J., Liao, Z., Wang, L., Zhong, Q., Wei, H., et al., 2022. Correlation between the regulation of intestinal bacteriophages by green tea polyphenols and the flora diversity in SPF mice. Food Funct 13, 2952-2965.
    Dutilh, B.E., Cassman, N., McNair, K., Sanchez, S.E., Silva, G.G.Z., Boling, L., Barr, J.J., Speth, D.R., Seguritan, V., Aziz, R.K., et al., 2014. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun 5, 4498.
    Edwards, R.A., Vega, A.A., Norman, H.M., Ohaeri, M., Levi, K., Dinsdale, E.A., Cinek, O., Aziz, R.K., McNair, K., Barr, J.J., et al., 2019. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol 4, 1727-1736.
    El-Gendi, H., Abu-Serie, M.M., Kamoun, E.A., Saleh, A.K., El-Fakharany, E.M., 2023. Statistical optimization and characterization of fucose-rich polysaccharides extracted from pumpkin (Cucurbita maxima) along with antioxidant and antiviral activities. Int J Biol Macromol 232, 123372.
    Eriksson, F., Tsagozis, P., Lundberg, K., Parsa, R., Mangsbo, S.M., Persson, M.A.A., Harris, R.A., Pisa, P., 2009. Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol 182, 3105-3111.
    Fan, Y., Ying, J., Ma, H., Cui, H., 2023. Microbiota-related metabolites fueling the understanding of ischemic heart disease. iMeta 2, e94.
    Finkbeiner, S.R., Allred, A.F., Tarr, P.I., Klein, E.J., Kirkwood, C.D., Wang, D., 2008. Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathog 4, e1000011.
    Fitzgerald, C.B., Shkoporov, A.N., Upadrasta, A., Khokhlova, E.V., Ross, R.P., Hill, C., 2021. Probing the “Dark Matter” of the Human Gut Phageome: Culture Assisted Metagenomics Enables Rapid Discovery and Host-Linking for Novel Bacteriophages. Front Cell Infect Microbiol 11, 616918.
    Franzosa, E.A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan, X.C., Huttenhower, C., 2015. Sequencing and beyond: integrating molecular “omics” for microbial community profiling. Nat Rev Microbiol 13, 360-372.
    Frazao, N., Sousa, A., Lassig, M., Gordo, I., 2019. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc Natl Acad Sci U S A 116, 17906-17915.
    Gallego, M., Leonardo, J., 2023. On Bioinformatics of the Human Gut Virome.
    Garmaeva, S., Gulyaeva, A., Sinha, T., Shkoporov, A.N., Clooney, A.G., Stockdale, S.R., Spreckels, J.E., Sutton, T.D.S., Draper, L.A., Dutilh, B.E., et al., 2021. Stability of the human gut virome and effect of gluten-free diet. Cell Rep 35, 109132.
    Garmaeva, S., Sinha, T., Kurilshikov, A., Fu, J., Wijmenga, C., Zhernakova, A., 2019. Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biol 17, 84.
    Gregory, A.C., Zablocki, O., Zayed, A.A., Howell, A., Bolduc, B., Sullivan, M.B., 2020. The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. Cell Host & Microbe 28, 724.
    Hehemann, J.-H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., Michel, G., 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908-912.
    Hehemann, J.-H., Kelly, A.G., Pudlo, N.A., Martens, E.C., Boraston, A.B., 2012. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A 109, 19786-19791.
    Holtz, L.R., Cao, S., Zhao, G., Bauer, I.K., Denno, D.M., Klein, E.J., Antonio, M., Stine, O.C., Snelling, T.L., Kirkwood, C.D., et al., 2014. Geographic variation in the eukaryotic virome of human diarrhea. Virology 468-470, 556-564.
    Howard-Varona, C., Lindback, M.M., Bastien, G.E., Solonenko, N., Zayed, A.A., Jang, H., Andreopoulos, B., Brewer, H.M., Glavina Del Rio, T., Adkins, J.N., et al., 2020. Phage-specific metabolic reprogramming of virocells. ISME J 14, 881-895.
    Howe, A., Ringus, D.L., Williams, R.J., Choo, Z.-N., Greenwald, S.M., Owens, S.M., Coleman, M.L., Meyer, F., Chang, E.B., 2016. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J 10, 1217-1227.
    Hsu, C.L., Zhang, X., Jiang, L., Lang, S., Hartmann, P., Pride, D., Fouts, D.E., Starkel, P., Schnabl, B., 2022. Intestinal virome in patients with alcohol use disorder and after abstinence. Hepatology Communications 6, 2058.
    Hu, J., Wu, Y., Kang, L., Liu, Y., Ye, H., Wang, R., Zhao, J., Zhang, G., Li, X., Wang, J., et al., 2023. Dietary D-xylose promotes intestinal health by inducing phage production in Escherichia coli. NPJ Biofilms Microbiomes 9, 79.
    Hurwitz, B.L., U’Ren, J.M., 2016. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol 31, 161-168.
    Jiang, L., Lang, S., Duan, Y., Zhang, X., Gao, B., Chopyk, J., Schwanemann, L.K., Ventura-Cots, M., Bataller, R., Bosques-Padilla, F., et al., 2020. Intestinal virome in patients with alcoholic hepatitis. Hepatology 72, 2182-2196.
    Jin, H., Quan, K., He, Q., Kwok, L.-Y., Ma, T., Li, Y., Zhao, F., You, L., Zhang, H., Sun, Z., 2023. A high-quality genome compendium of the human gut microbiome of Inner Mongolians. Nat Microbiol 8, 150-161.
    Johnson, C.H., Dejea, C.M., Edler, D., Hoang, L.T., Santidrian, A.F., Felding, B.H., Ivanisevic, J., Cho, K., Wick, E.C., Hechenbleikner, E.M., et al., 2015. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21, 891-897.
    Khan Mirzaei, M., Khan, M.A.A., Ghosh, P., Taranu, Z.E., Taguer, M., Ru, J., Chowdhury, R., Kabir, M.M., Deng, L., Mondal, D., et al., 2020. Bacteriophages Isolated from Stunted Children Can Regulate Gut Bacterial Communities in an Age-Specific Manner. Cell Host Microbe 27, 199-212.e5.
    Khazrai, Y.M., Defeudis, G., Pozzilli, P., 2014. Effect of diet on type 2 diabetes mellitus: a review. Diabetes Metab Res Rev 30 Suppl 1, 24-33.
    Kim, M.-S., Bae, J.-W., 2018. Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J 12, 1127-1141.
    Kim, M.-S., Bae, J.-W., 2016. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environmental Microbiology 18, 1498-1510.
    Kortright, K.E., Chan, B.K., Koff, J.L., Turner, P.E., 2019. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host & Microbe 25, 219-232.
    Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y.S., De Vadder, F., Arora, T., Hallen, A., Martens, E., Bjorck, I., Backhed, F., 2015. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab 22, 971-982.
    Lamberti, L.M., Fischer Walker, C.L., Noiman, A., Victora, C., Black, R.E., 2011. Breastfeeding and the risk for diarrhea morbidity and mortality. BMC Public Health 11 Suppl 3, S15.
    Lee, C.Z., Zoqratt, M.Z.H.M., Phipps, M.E., Barr, J.J., Lal, S.K., Ayub, Q., Rahman, S., 2022. The gut virome in two indigenous populations from Malaysia. Sci Rep 12, 1824.
    Lee, I.-A., Low, D., Kamba, A., Llado, V., Mizoguchi, E., 2014. Oral caffeine administration ameliorates acute colitis by suppressing chitinase 3-like 1 expression in intestinal epithelial cells. J Gastroenterol 49, 1206-1216.
    Lepage, P., Colombet, J., Marteau, P., Sime-Ngando, T., Dore, J., Leclerc, M., 2008. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57, 424-425.
    Li, Junhui, Markowitz, R.H.G., Brooks, A.W., Mallott, E.K., Leigh, B.A., Olszewski, T., Zare, H., Bagheri, M., Smith, H.M., Friese, K.A., et al., 2022. Individuality and ethnicity eclipse a short-term dietary intervention in shaping microbiomes and viromes. PLOS Biology 20, e3001758.
    Li, Junhua, Yang, F., Xiao, M., Li, A., 2022. Advances and challenges in cataloging the human gut virome. Cell Host Microbe 30, 908-916.
    Liang, G., Bushman, F.D., 2021. The human virome: assembly, composition and host interactions. Nat Rev Microbiol 19, 514-527.
    Liang, G., Zhao, C., Zhang, H., Mattei, L., Sherrill-Mix, S., Bittinger, K., Kessler, L.R., Wu, G.D., Baldassano, R.N., DeRusso, P., et al., 2020. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470-474.
    Lin, D.M., Koskella, B., Ritz, N.L., Lin, D., Carroll-Portillo, A., Lin, H.C., 2019. Transplanting Fecal Virus-Like Particles Reduces High-Fat Diet-Induced Small Intestinal Bacterial Overgrowth in Mice. Front. Cell. Infect. Microbiol. 9.
    Lin, D.M., Lin, H.C., 2019. A theoretical model of temperate phages as mediators of gut microbiome dysbiosis. F1000Res 8, F1000 Faculty Rev-997.
    Littlejohn, P.T., Metcalfe-Roach, A., Cardenas Poire, E., Holani, R., Bar-Yoseph, H., Fan, Y.M., Woodward, S.E., Finlay, B.B., 2023. Multiple micronutrient deficiencies in early life cause multi-kingdom alterations in the gut microbiome and intrinsic antibiotic resistance genes in mice. Nat Microbiol 8, 2392-2405.
    Liu, J., He, Z., Ma, N., Chen, Z.-Y., 2020. Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota. J. Agric. Food Chem. 68, 33-47.
    Luo, X.-Q., Wang, P., Li, J.-L., Ahmad, M., Duan, L., Yin, L.-Z., Deng, Q.-Q., Fang, B.-Z., Li, S.-H., Li, W.-J., 2022. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts. Microbiome 10, 190.
    Mangalea, M.R., Paez-Espino, D., Kieft, K., Chatterjee, A., Chriswell, M.E., Seifert, J.A., Feser, M.L., Demoruelle, M.K., Sakatos, A., Anantharaman, K., et al., 2021. Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host Microbe 29, 726-739.e5.
    Maqsood, R., Rodgers, R., Rodriguez, C., Handley, S.A., Ndao, I.M., Tarr, P.I., Warner, B.B., Lim, E.S., Holtz, L.R., 2019. Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome 7, 156.
    McHugh, R.K., Weiss, R.D., 2019. Alcohol Use Disorder and Depressive Disorders. Alcohol Res 40, arcr.v40.1.01.
    Mehta, N.M., Corkins, M.R., Lyman, B., Malone, A., Goday, P.S., Carney, L. (Nieman), Monczka, J.L., Plogsted, S.W., Schwenk, W.F., the American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Board of Directors, 2013. Defining Pediatric Malnutrition. Journal of Parenteral and Enteral Nutrition 37, 460-481.
    Mihindukulasuriya, K.A., Mars, R.A.T., Johnson, A.J., Ward, T., Priya, S., Lekatz, H.R., Kalari, K.R., Droit, L., Zheng, T., Blekhman, R., et al., 2021. Multi-Omics Analyses Show Disease, Diet, and Transcriptome Interactions With the Virome. Gastroenterology 161, 1194-1207.e8.
    Minot, S., Bryson, A., Chehoud, C., Wu, G.D., Lewis, J.D., Bushman, F.D., 2013. Rapid evolution of the human gut virome. Proc Natl Acad Sci U S A 110, 12450-12455.
    Minot, S., Grunberg, S., Wu, G.D., Lewis, J.D., Bushman, F.D., 2012. Hypervariable loci in the human gut virome. Proc Natl Acad Sci U S A 109, 3962-3966.
    Minot, S., Sinha, R., Chen, J., Li, H., Keilbaugh, S.A., Wu, G.D., Lewis, J.D., Bushman, F.D., 2011. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21, 1616-1625.
    Monaghan, T.M., Sloan, T.J., Stockdale, S.R., Blanchard, A.M., Emes, R.D., Wilcox, M., Biswas, R., Nashine, R., Manke, S., Gandhi, J., et al., 2020. Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome. Gut Microbes 12, 1752605.
    Muller, O., Krawinkel, M., 2005. Malnutrition and health in developing countries. CMAJ 173, 279-286.
    Nakatsu, G., Zhou, H., Wu, W.K.K., Wong, S.H., Coker, O.O., Dai, Z., Li, X., Szeto, C.-H., Sugimura, N., Lam, T.Y.-T., et al., 2018. Alterations in Enteric Virome Are Associated With Colorectal Cancer and Survival Outcomes. Gastroenterology 155, 529-541.e5.
    Nayfach, S., Paez-Espino, D., Call, L., Low, S.J., Sberro, H., Ivanova, N.N., Proal, A.D., Fischbach, M.A., Bhatt, A.S., Hugenholtz, P., et al., 2021. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol 6, 960-970.
    Neil, J.A., Cadwell, K., 2018. The Intestinal Virome and Immunity. The Journal of Immunology 201, 1615-1624.
    Nishijima, S., Nagata, N., Kiguchi, Y., Kojima, Y., Miyoshi-Akiyama, T., Kimura, M., Ohsugi, M., Ueki, K., Oka, S., Mizokami, M., et al., 2022. Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort. Nat Commun 13, 1-14.
    Norman, J.M., Handley, S.A., Baldridge, M.T., Droit, L., Liu, C.Y., Keller, B.C., Kambal, A., Monaco, C.L., Zhao, G., Fleshner, P., et al., 2015. Disease-specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell 160, 447-460.
    Oh, J.-H., Alexander, L.M., Pan, M., Schueler, K.L., Keller, M.P., Attie, A.D., Walter, J., van Pijkeren, J.-P., 2019. Dietary Fructose and Microbiota-Derived Short-Chain Fatty Acids Promote Bacteriophage Production in the Gut Symbiont Lactobacillus reuteri. Cell Host & Microbe 25, 273-284.e6.
    Parnanen, K., Karkman, A., Hultman, J., Lyra, C., Bengtsson-Palme, J., Larsson, D.G.J., Rautava, S., Isolauri, E., Salminen, S., Kumar, H., et al., 2018. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun 9, 3891.
    Penades, J.R., Chen, J., Quiles-Puchalt, N., Carpena, N., Novick, R.P., 2015. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol 23, 171-178.
    Pou, C., Nkulikiyimfura, D., Henckel, E., Olin, A., Lakshmikanth, T., Mikes, J., Wang, J., Chen, Y., Bernhardsson, A.K., Gustafsson, A., et al., 2019. The repertoire of maternal anti-viral antibodies in human newborns. Nat Med 25, 591-596.
    Pu, Y., Chen, L., He, X., Ma, Y., Cao, J., Jiang, W., Pu, Y., Chen, L., He, X., Ma, Y., et al., 2023. Potential beneficial effects of functional components of edible plants on COVID-19: Based on their anti-inflammatory and inhibitory effect on SARS-CoV-2. F 2, 44-59.
    Qin, J., Ji, B., Ma, Y., Liu, X., Wang, T., Liu, G., Li, B., Wang, G., Gao, P., 2023. Diversity and potential function of pig gut DNA viruses. Heliyon 9, e14020.
    Ramkissoon, R., Shah, V.H., 2022. Alcohol Use Disorder and Alcohol-Associated Liver Disease. Alcohol Res 42, 13.
    Rasmussen, T.S., de Vries, L., Kot, W., Hansen, L.H., Castro-Mejia, J.L., Vogensen, F.K., Hansen, A.K., Nielsen, D.S., 2019. Mouse Vendor Influence on the Bacterial and Viral Gut Composition Exceeds the Effect of Diet. Viruses 11, 435.
    Rasmussen, T.S., Mentzel, C.M.J., Kot, W., Castro-Mejia, J.L., Zuffa, S., Swann, J.R., Hansen, L.H., Vogensen, F.K., Hansen, A.K., Nielsen, D.S., 2020. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut 69, 2122-2130.
    Ren, J., Ahlgren, N.A., Lu, Y.Y., Fuhrman, J.A., Sun, F., 2017. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 5, 69.
    Reyes, A., Haynes, M., Hanson, N., Angly, F.E., Heath, A.C., Rohwer, F., Gordon, J.I., 2010. Viruses in the fecal microbiota of monozygotic twins and their mothers. Nature 466, 334-338.
    Reyes, A., Semenkovich, N.P., Whiteson, K., Rohwer, F., Gordon, J.I., 2012. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 10, 607-617.
    Roux, S., Enault, F., Hurwitz, B.L., Sullivan, M.B., 2015a. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985.
    Roux, S., Hallam, S.J., Woyke, T., Sullivan, M.B., 2015b. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. Elife 4, e08490.
    Saha, P., Skidmore, P.T., Holland, L.A., Mondal, A., Bose, D., Seth, R.K., Sullivan, K., Janulewicz, P.A., Horner, R., Klimas, N., et al., 2021. Andrographolide Attenuates Gut-Brain-Axis Associated Pathology in Gulf War Illness by Modulating Bacteriome-Virome Associated Inflammation and Microglia-Neuron Proinflammatory Crosstalk. Brain Sci 11, 905.
    Schulfer, A., Santiago-Rodriguez, T.M., Ly, M., Borin, J.M., Chopyk, J., Blaser, M.J., Pride, D.T., 2020. Fecal Viral Community Responses to High-Fat Diet in Mice. mSphere 5, e00833-19.
    Shkoporov, A.N., Clooney, A.G., Sutton, T.D.S., Ryan, F.J., Daly, K.M., Nolan, J.A., McDonnell, S.A., Khokhlova, E.V., Draper, L.A., Forde, A., et al., 2019. The Human Gut Virome Is Highly Diverse, Stable, and Individual Specific. Cell Host & Microbe 26, 527-541.e5.
    Shkoporov, A.N., Hill, C., 2019. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe 25, 195-209.
    Singh, R.K., Chang, H.-W., Yan, D., Lee, K.M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T.H., et al., 2017. Influence of diet on the gut microbiome and implications for human health. J Transl Med 15, 73.
    Sinha, A., Li, Y., Mirzaei, M.K., Shamash, M., Samadfam, R., King, I.L., Maurice, C.F., 2022. Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome 10, 105.
    Sullivan, M.B., Lindell, D., Lee, J.A., Thompson, L.R., Bielawski, J.P., Chisholm, S.W., 2006. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4, e234.
    Sweere, J.M., Van Belleghem, J.D., Ishak, H., Bach, M.S., Popescu, M., Sunkari, V., Kaber, G., Manasherob, R., Suh, G.A., Cao, X., et al., 2019. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691.
    Thompson, L.R., Zeng, Q., Kelly, L., Huang, K.H., Singer, A.U., Stubbe, J., Chisholm, S.W., 2011. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci U S A 108, E757-764.
    Thurber, R.V., Haynes, M., Breitbart, M., Wegley, L., Rohwer, F., 2009. Laboratory procedures to generate viral metagenomes. Nat Protoc 4, 470-483.
    Tomofuji, Y., Kishikawa, T., Maeda, Y., Ogawa, K., Otake-Kasamoto, Y., Kawabata, S., Nii, T., Okuno, T., Oguro-Igashira, E., Kinoshita, M., et al., 2022. Prokaryotic and viral genomes recovered from 787 Japanese gut metagenomes revealed microbial features linked to diets, populations, and diseases. Cell Genomics 2, 100219.
    Torres, J., Mehandru, S., Colombel, J.-F., Peyrin-Biroulet, L., 2017. Crohn’s disease. Lancet 389, 1741-1755.
    Turin, C.G., Ochoa, T.J., 2014. The Role of Maternal Breast Milk in Preventing Infantile Diarrhea in the Developing World. Curr Trop Med Rep 1, 97-105.
    Van Espen, L., Bak, E.G., Beller, L., Close, L., Deboutte, W., Juel, H.B., Nielsen, T., Sinar, D., De Coninck, L., Frithioff-Boejsoee, C., et al., 2021. A Previously Undescribed Highly Prevalent Phage Identified in a Danish Enteric Virome Catalog. mSystems 6, e0038221.
    Waller, A.S., Yamada, T., Kristensen, D.M., Kultima, J.R., Sunagawa, S., Koonin, E.V., Bork, P., 2014. Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME J 8, 1391-1402.
    Walters, W.A., Granados, A.C., Ley, C., Federman, S., Stryke, D., Santos, Y., Haggerty, T., Sotomayor-Gonzalez, A., Servellita, V., Ley, R.E., et al., 2023. Longitudinal comparison of the developing gut virome in infants and their mothers. Cell Host Microbe 31, 187-198.e3.
    Wang, H., Li, J., Wu, G., Zhang, F., Yin, J., He, Y., 2022. The effect of intrinsic factors and mechanisms in shaping human gut microbiota. Medicine in Microecology 12, 100054.
    Wang, J., Gao, Y., Zhao, F., 2016. Phage-bacteria interaction network in human oral microbiome. Environ Microbiol 18, 2143-2158.
    Wang, J., Qi, J., Zhao, H., He, S., Zhang, Y., Wei, S., Zhao, F., 2013. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci Rep 3, 1843.
    Wang, J., Xiao, L., Xiao, B., Zhang, B., Zuo, Z., Ji, P., Zheng, J., Li, X., Zhao, F., 2022. Maternal and neonatal viromes indicate the risk of offspring’s gastrointestinal tract exposure to pathogenic viruses of vaginal origin during delivery. mLife 1, 303-310.
    Wang, J., Zheng, J., Shi, W., Du, N., Xu, X., Zhang, Y., Ji, P., Zhang, F., Jia, Z., Wang, Y., et al., 2018. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67, 1614-1625.
    Wang, R., Chen, D., Wang, F., Fan, X., Fan, C., Tang, T., Li, P., Yang, M., Zhao, Y., Qi, K., 2021. An insight into the exploration of proliferation of antibiotic resistance genes in high-fat diet induced obesity mice. Genomics 113, 2503-2512.
    Weinbauer, M.G., Hornak, K., Jezbera, J., Nedoma, J., Dolan, J.R., Simek, K., 2007. Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ Microbiol 9, 777-788.
    Xiao, L., Wang, J., Zheng, J., Li, X., Zhao, F., 2021. Deterministic transition of enterotypes shapes the infant gut microbiome at an early age. Genome Biol 22, 243.
    Yan, Q., Wang, Y., Chen, X., Jin, H., Wang, G., Guan, K., Zhang, Y., Zhang, P., Ayaz, T., Liang, Y., et al., 2021. Characterization of the gut DNA and RNA Viromes in a Cohort of Chinese Residents and Visiting Pakistanis. Virus Evol 7, veab022.
    Yang, J., Li, L., Tan, S., Jin, H., Qiu, J., Mao, Q., Li, R., Xia, C., Jiang, Z.-H., Jiang, S., et al., 2012. A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: potential applications for preventing HIV-1 infection. Fitoterapia 83, 348-355.
    Yang, K., Niu, J., Zuo, T., Sun, Y., Xu, Z., Tang, W., Liu, Q., Zhang, J., Ng, E.K.W., Wong, S.K.H., et al., 2021. Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology 161, 1257-1269.e13.
    Yutin, N., Makarova, K.S., Gussow, A.B., Krupovic, M., Segall, A., Edwards, R.A., Koonin, E.V., 2018. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat Microbiol 3, 38-46.
    Zhang, T., Breitbart, M., Lee, W.H., Run, J.-Q., Wei, C.L., Soh, S.W.L., Hibberd, M.L., Liu, E.T., Rohwer, F., Ruan, Y., 2005. RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses. PLOS Biology 4, e3.
    Zhou, H., Zhao, H., Zheng, J., Gao, Y., Zhang, Y., Zhao, F., Wang, J., 2015. CRISPRs provide broad and robust protection to oral microbial flora of gingival health against bacteriophage challenge. Protein Cell 6, 541-545.
    Zuo, T., Sun, Y., Wan, Y., Yeoh, Y.K., Zhang, F., Cheung, C.P., Chen, N., Luo, J., Wang, W., Sung, J.J.Y., et al., 2020. Human-Gut-DNA Virome Variations across Geography, Ethnicity, and Urbanization. Cell Host & Microbe 28, 741-751.e4.
    Zuo, T., Wong, S.H., Lam, K., Lui, R., Cheung, K., Tang, W., Ching, J.Y.L., Chan, P.K.S., Chan, M.C.W., Wu, J.C.Y., et al., 2018. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634-643.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return