9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 3
Mar.  2025
Turn off MathJax
Article Contents

Genetic variations in ZmEREB179 are associated with waterlogging tolerance in maize

doi: 10.1016/j.jgg.2024.04.005
Funds:

This study was supported by the science and technology major program of Hubei Province (2022ABA001), the National Key Research and Development Program of Shandong Province (2022CXPT014), and the Knowledge Innovation Program of Wuhan-Shugung Project (2023020201020413).

  • Received Date: 2024-01-07
  • Accepted Date: 2024-04-10
  • Rev Recd Date: 2024-04-10
  • Available Online: 2025-07-11
  • Publish Date: 2024-04-16
  • Maize (Zea mays) is highly susceptible to waterlogging stress, which reduces both the yield and quality of this important crop. However, the molecular mechanism governing waterlogging tolerance is poorly understood. In this study, we identify a waterlogging- and ethylene-inducible gene ZmEREB179 that encodes an ethylene response factor (ERF) localized in the nucleus. Overexpression of ZmEREB179 in maize increases the sensitivity to waterlogging stress. Conversely, the zmereb179 knockout mutants are more tolerant to waterlogging, suggesting that ZmEREB179 functions as a negative regulator of waterlogging tolerance. A transcriptome analysis of the ZmEREB179-overexpressing plants reveals that the ERF-type transcription factor modulates the expression of various stress-related genes, including ZmEREB180. We find that ZmEREB179 directly targets the ZmEREB180 promoter and represses its expression. Notably, the analysis of a panel of 220 maize inbred lines reveals that genetic variations in the ZmEREB179 promoter (Hap2) are highly associated with waterlogging resistance. The functional association of Hap2 with waterlogging resistance is tightly co-segregated in two F2 segregating populations, highlighting its potential applications in breeding programs. Our findings shed light on the involvement of the transcriptional cascade of ERF genes in regulating plant-waterlogging tolerance.
  • loading
  • Bailey-Serres, J., Voesenek, L.A.C.J., 2010. Life in the balance: a signaling network controlling survival of flooding. Curr. Opin. Plant Biol. 13, 489-494.
    Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A., van Dongen, J.T., 2012a. Making sense of low oxygen sensing. Trends Plant Sci. 17, 129-138.
    Bailey-Serres, J., Lee, S.C., Brinton, E., 2012b. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160, 1698-1709.
    Bui, L.T., Giuntoli, B., Kosmacz, M., Parlanti, S., Licausi, F., 2015. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci. 236, 37-43.
    Campbell, M.T., Proctor, C.A., Dou, Y., Schmitz, A.J., Phansak, P., Kruger, G.R., Zhang, C., Walia, H., 2015. Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize. PLoS One 10, e0120385.
    Cao, L., Lu, X., Wang, G., Zhang, Q., Zhang, X., Fan, Z., Cao, Y., Wei, L., Wang, T., Wang, Z., 2021. Maize ZmbZIP33 is involved in drought resistance and recovery ability through an abscisic acid-dependent signaling pathway. Front. Plant Sci. 12, 629903.
    Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., Yu, D., 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta. 1819, 120-128.
    Cheng, X., Zhang, S., Tao, W., Zhang, X., Liu, J., Sun, J., Zhang, H., Pu, L., Huang, R., Chen, T., 2018. INDETERMINATE SPIKELET1 recruits histone deacetylase and a transcriptional repression complex to regulate rice salt tolerance. Plant Physiol. 178, 824-837.
    Dong, C.J., Liu, J.Y., 2010. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC plant biol. 10, 47.
    Gibbs, J., Greenway, H., 2003. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 1-47.
    Gibbs, D.J., Conde, J.V., Berckhan, S., Prasad, G., Mendiondo, G.M., Holdsworth, M.J., 2015. Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol. 169, 23-31.
    Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., Ashikari, M., 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030.
    Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., Kanae, S., 2013. Global flood risk under climate change. Nature Clim. Change 3, 816-821.
    Hu, J., Ren, B., Dong, S., Liu, P., Zhao, B., Zhang, J., 2022. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. Crop J. 10, 478-489.
    Kagale, S., Rozwadowski, K., 2011. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6, 141-146.
    Kuroha, T., Ashikari, M., 2020. Molecular mechanisms and future improvement of submergence tolerance in rice. Mol. Breeding 40, 41.
    Lei, L., Pan, H., Hu, HY., Fan, X.W., Wu, Z.B., Li, Y.Z., 2023. Characterization of ZmPMP3g function in drought tolerance of maize. Sci. Rep. 13, 7375.
    Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yang, N., et al., 2012. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 45, 43-50.
    Li, C., Su, J., Zhao, N., Lou, L., Ou, X., Yan, Y., Wang, L., Jiang, J., Chen, S., Chen, F., 2023. CmERF5-CmRAP2.3 transcriptional cascade positively regulates waterlogging tolerance in Chrysanthemum morifolium. Plant Biotechnol. J. 21, 270-282.
    Liang, K., Tang, K., Fang, T., Qiu, F., 2020. Waterlogging tolerance in maize: genetic and molecular basis. Mol. Breeding 40, 111.
    Licausi, F., Ohme-Takagi, M., Perata, P., 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 199, 639-649.
    Lin, C.C., Chao, Y.T., Chen, W.C., Ho, H.Y., Chou, M.Y., Li, Y.R., Wu, Y.L., Yang, H.A., Hsieh, H., Lin, C.S., et al., 2019. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc. Natl. Acad. Sci. U. S. A. 116, 3300-3309.
    Liu, P., Sun, F., Gao, R., Dong, H., 2012. RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Mol. Biol. 79, 609-622.
    Luan, H., Guo, B., Shen, H., Pan, Y., Hong, Y., Lv, C., Xu, R., 2020. Overexpression of barley transcription factor HvERF2.11 in Arabidopsis enhances plant waterlogging tolerance. Int. J. Mol. Sci. 21, 1982.
    Mano, Y., Nakazono, M., 2021. Genetic regulation of root traits for soil flooding tolerance in genus Zea. Breed Sci. 71, 30-39.
    Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F., 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490-498.
    Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K., 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta. 1819, 86-96.
    Najeeb, U., Bange, M.P., Tan, D.K., Atwell, B.J., 2015. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AoB. Plants 7, plv080.
    Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H., 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140, 411-432.
    Phukan, U.J., Jeena, G.S., Tripathi, V., Shukla, R.K., 2018. MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnol. J. 16, 221-233.
    Ren, X., Pan, Z., Zhao, H., Zhao, J., Cai, M., Li, J., Zhang, Z., Qiu, F., 2017. EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. J. Exp. Bot. 68, 4571-4581.
    Samad, A.F.A., Sajad, M., Nazaruddin, N., Fauzi, I.A., Murad, A.M.A., Zainal, Z., Ismail, I., 2017. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. Front. Plant Sci. 8, 565.
    Santosa, I.E., Ram, P.C., Boamfa, E.I., Laarhoven, L.J., Reuss, J., Jackson, M.B., Harren, F.J., 2007. Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon. Planta 226, 193-202.
    Sasidharan, R., Voesenek, L.A.C.J., 2015. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169, 3-12.
    Sharma, M.K., Kumar, R., Solanke, A.U., Sharma, R., Tyagi, A.K., Sharma, A.K., 2010. Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol. Genet. Genomics 284, 455-475.
    Song, C.P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P., Zhu, J.K., 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17, 2384-2396.
    Song, L., Huang, S.C., Wise, A., Castanon, R., Nery, J.R., Chen, H., Watanabe, M., Thomas, J., Bar-Joseph, Z., Ecker, J.R., 2016. A transcription factor hierarchy defines an environmental stress response network. Science 354, aag1550.
    Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., Su, Z., 2017. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic acids Res. 45, W122-W129.
    Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidlitz, H.K., Zabeau, M., Van Montagu, M., Inze, D., Van Breusegem, F., 2004. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 39, 45-58.
    Voesenek, L., Bailey-Serres, J., 2015. Flood adaptive traits and processes: an overview. New Phytol. 206, 57-73.
    Wang, Y., Branicky, R., Noe, A., Hekimi, S., 2018. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915-1928.
    Wang, L., Gao, J., Zhang, Z., Liu, W., Cheng, P., Mu, W., Su, T., Chen, S., Chen, F., Jiang, J., 2020. Overexpression of CmSOS1 confers waterlogging tolerance in Chrysanthemum. J. Integr. Plant Biol. 62:1059-1064.
    Wang, Z., Zhao, X., Ren, Z., Abou-Elwafa, S.F., Pu, X., Zhu, Y., Dou, D., Su, H., Cheng, H., Liu, Z., et al., 2022. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ. 45, 312-328.
    Wei, X., Xu, H., Rong, W., Ye, X., Zhang, Z., 2019. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant Cell Environ. 42, 1471-1485.
    Wu, L., Luo, Z., Shi, Y., Jiang, Y., Li, R., Miao, X., Yang, F., Li, Q., Zhao, H., Xue, J., Xu, S., Zhang, T., Li, L., 2022. A cost-effective tsCUT&Tag method for profiling transcription factor binding landscape. J. Integr. Plant Biol. 64, 2033-2038.
    Xiang, Y., Bian, X., Wei, T., Yan, J., Sun, X., Han, T., Dong, B., Zhang, G., Li, J., Zhang, A., 2021a. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. New Phytol. 232, 2400-2417.
    Xiang, Y., Sun, X., Bian, X., Wei, T., Han, T., Yan, J., Zhang, A., 2021b. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J. Exp. Bot. 72, 1399-1410.
    Xie, Z., Nolan, T.M., Jiang, H., Yin, Y., 2019. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front. Plant Sci. 10, 228.
    Xiong, L., Schumaker, K.S., Zhu, J.K., 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-183.
    Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., Mackill, D.J., 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708.
    Xuewen, X., Huihui, W., Xiaohua, Q., Qiang, X., Xuehao, C., 2014. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci. Hortic. 179, 388-395.
    Yamaguchi-Shinozaki, K., Shinozaki, K., 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781-803.
    Yu, F., Liang, K., Fang, T., Zhao, H., Han, X., Cai, M., Qiu, F., 2019. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol. J. 17, 2286-2298.
    Zeng, R., Li, Z., Shi, Y., Fu, D., Yin, P., Cheng, J., Jiang, C., Yang, S., 2021. Natural variation in a type-A response regulator confers maize chilling tolerance. Nat. Commun. 12, 4713.
    Zhang, H., Zhu, J., Gong, Z., Zhu, J.K., 2022. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104-119.
    Zhao, L., Yan, J., Xiang, Y., Sun, Y., Zhang, A., 2021. ZmWRKY104 transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced antioxidant defense and enhance drought tolerance in maize. Biology 10, 893.
    Zheng, C., Jiang, D., Liu, F., Dai, T., Jing, Q., Cao, W., 2009. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176, 575-582.
    Zhou, W., Chen, F., Meng, Y., Chandrasekaran, U., Luo, X., Yang, W., Shu, K., 2020a. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol. Biochem. 148, 228-236.
    Zhou, X., Xiang, Y., Li, C., Yu, G., 2020b. Modulatory role of reactive oxygen species in root development in model plant of Arabidopsis thaliana. Front. Plant Sci. 11, 485932.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return