Bailey-Serres, J., Voesenek, L.A.C.J., 2010. Life in the balance: a signaling network controlling survival of flooding. Curr. Opin. Plant Biol. 13, 489-494.
|
Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A., van Dongen, J.T., 2012a. Making sense of low oxygen sensing. Trends Plant Sci. 17, 129-138.
|
Bailey-Serres, J., Lee, S.C., Brinton, E., 2012b. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160, 1698-1709.
|
Bui, L.T., Giuntoli, B., Kosmacz, M., Parlanti, S., Licausi, F., 2015. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci. 236, 37-43.
|
Campbell, M.T., Proctor, C.A., Dou, Y., Schmitz, A.J., Phansak, P., Kruger, G.R., Zhang, C., Walia, H., 2015. Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize. PLoS One 10, e0120385.
|
Cao, L., Lu, X., Wang, G., Zhang, Q., Zhang, X., Fan, Z., Cao, Y., Wei, L., Wang, T., Wang, Z., 2021. Maize ZmbZIP33 is involved in drought resistance and recovery ability through an abscisic acid-dependent signaling pathway. Front. Plant Sci. 12, 629903.
|
Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., Yu, D., 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta. 1819, 120-128.
|
Cheng, X., Zhang, S., Tao, W., Zhang, X., Liu, J., Sun, J., Zhang, H., Pu, L., Huang, R., Chen, T., 2018. INDETERMINATE SPIKELET1 recruits histone deacetylase and a transcriptional repression complex to regulate rice salt tolerance. Plant Physiol. 178, 824-837.
|
Dong, C.J., Liu, J.Y., 2010. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC plant biol. 10, 47.
|
Gibbs, J., Greenway, H., 2003. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 1-47.
|
Gibbs, D.J., Conde, J.V., Berckhan, S., Prasad, G., Mendiondo, G.M., Holdsworth, M.J., 2015. Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol. 169, 23-31.
|
Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., Ashikari, M., 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460, 1026-1030.
|
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., Kanae, S., 2013. Global flood risk under climate change. Nature Clim. Change 3, 816-821.
|
Hu, J., Ren, B., Dong, S., Liu, P., Zhao, B., Zhang, J., 2022. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. Crop J. 10, 478-489.
|
Kagale, S., Rozwadowski, K., 2011. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6, 141-146.
|
Kuroha, T., Ashikari, M., 2020. Molecular mechanisms and future improvement of submergence tolerance in rice. Mol. Breeding 40, 41.
|
Lei, L., Pan, H., Hu, HY., Fan, X.W., Wu, Z.B., Li, Y.Z., 2023. Characterization of ZmPMP3g function in drought tolerance of maize. Sci. Rep. 13, 7375.
|
Li, H., Peng, Z., Yang, X., Wang, W., Fu, J., Wang, J., Han, Y., Chai, Y., Guo, T., Yang, N., et al., 2012. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 45, 43-50.
|
Li, C., Su, J., Zhao, N., Lou, L., Ou, X., Yan, Y., Wang, L., Jiang, J., Chen, S., Chen, F., 2023. CmERF5-CmRAP2.3 transcriptional cascade positively regulates waterlogging tolerance in Chrysanthemum morifolium. Plant Biotechnol. J. 21, 270-282.
|
Liang, K., Tang, K., Fang, T., Qiu, F., 2020. Waterlogging tolerance in maize: genetic and molecular basis. Mol. Breeding 40, 111.
|
Licausi, F., Ohme-Takagi, M., Perata, P., 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 199, 639-649.
|
Lin, C.C., Chao, Y.T., Chen, W.C., Ho, H.Y., Chou, M.Y., Li, Y.R., Wu, Y.L., Yang, H.A., Hsieh, H., Lin, C.S., et al., 2019. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc. Natl. Acad. Sci. U. S. A. 116, 3300-3309.
|
Liu, P., Sun, F., Gao, R., Dong, H., 2012. RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Mol. Biol. 79, 609-622.
|
Luan, H., Guo, B., Shen, H., Pan, Y., Hong, Y., Lv, C., Xu, R., 2020. Overexpression of barley transcription factor HvERF2.11 in Arabidopsis enhances plant waterlogging tolerance. Int. J. Mol. Sci. 21, 1982.
|
Mano, Y., Nakazono, M., 2021. Genetic regulation of root traits for soil flooding tolerance in genus Zea. Breed Sci. 71, 30-39.
|
Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F., 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490-498.
|
Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K., 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta. 1819, 86-96.
|
Najeeb, U., Bange, M.P., Tan, D.K., Atwell, B.J., 2015. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AoB. Plants 7, plv080.
|
Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H., 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140, 411-432.
|
Phukan, U.J., Jeena, G.S., Tripathi, V., Shukla, R.K., 2018. MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnol. J. 16, 221-233.
|
Ren, X., Pan, Z., Zhao, H., Zhao, J., Cai, M., Li, J., Zhang, Z., Qiu, F., 2017. EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. J. Exp. Bot. 68, 4571-4581.
|
Samad, A.F.A., Sajad, M., Nazaruddin, N., Fauzi, I.A., Murad, A.M.A., Zainal, Z., Ismail, I., 2017. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. Front. Plant Sci. 8, 565.
|
Santosa, I.E., Ram, P.C., Boamfa, E.I., Laarhoven, L.J., Reuss, J., Jackson, M.B., Harren, F.J., 2007. Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon. Planta 226, 193-202.
|
Sasidharan, R., Voesenek, L.A.C.J., 2015. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169, 3-12.
|
Sharma, M.K., Kumar, R., Solanke, A.U., Sharma, R., Tyagi, A.K., Sharma, A.K., 2010. Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol. Genet. Genomics 284, 455-475.
|
Song, C.P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P., Zhu, J.K., 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17, 2384-2396.
|
Song, L., Huang, S.C., Wise, A., Castanon, R., Nery, J.R., Chen, H., Watanabe, M., Thomas, J., Bar-Joseph, Z., Ecker, J.R., 2016. A transcription factor hierarchy defines an environmental stress response network. Science 354, aag1550.
|
Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., Xu, W., Su, Z., 2017. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic acids Res. 45, W122-W129.
|
Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidlitz, H.K., Zabeau, M., Van Montagu, M., Inze, D., Van Breusegem, F., 2004. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 39, 45-58.
|
Voesenek, L., Bailey-Serres, J., 2015. Flood adaptive traits and processes: an overview. New Phytol. 206, 57-73.
|
Wang, Y., Branicky, R., Noe, A., Hekimi, S., 2018. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915-1928.
|
Wang, L., Gao, J., Zhang, Z., Liu, W., Cheng, P., Mu, W., Su, T., Chen, S., Chen, F., Jiang, J., 2020. Overexpression of CmSOS1 confers waterlogging tolerance in Chrysanthemum. J. Integr. Plant Biol. 62:1059-1064.
|
Wang, Z., Zhao, X., Ren, Z., Abou-Elwafa, S.F., Pu, X., Zhu, Y., Dou, D., Su, H., Cheng, H., Liu, Z., et al., 2022. ZmERF21 directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ. 45, 312-328.
|
Wei, X., Xu, H., Rong, W., Ye, X., Zhang, Z., 2019. Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant Cell Environ. 42, 1471-1485.
|
Wu, L., Luo, Z., Shi, Y., Jiang, Y., Li, R., Miao, X., Yang, F., Li, Q., Zhao, H., Xue, J., Xu, S., Zhang, T., Li, L., 2022. A cost-effective tsCUT&Tag method for profiling transcription factor binding landscape. J. Integr. Plant Biol. 64, 2033-2038.
|
Xiang, Y., Bian, X., Wei, T., Yan, J., Sun, X., Han, T., Dong, B., Zhang, G., Li, J., Zhang, A., 2021a. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. New Phytol. 232, 2400-2417.
|
Xiang, Y., Sun, X., Bian, X., Wei, T., Han, T., Yan, J., Zhang, A., 2021b. The transcription factor ZmNAC49 reduces stomatal density and improves drought tolerance in maize. J. Exp. Bot. 72, 1399-1410.
|
Xie, Z., Nolan, T.M., Jiang, H., Yin, Y., 2019. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front. Plant Sci. 10, 228.
|
Xiong, L., Schumaker, K.S., Zhu, J.K., 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-183.
|
Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., Mackill, D.J., 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442, 705-708.
|
Xuewen, X., Huihui, W., Xiaohua, Q., Qiang, X., Xuehao, C., 2014. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci. Hortic. 179, 388-395.
|
Yamaguchi-Shinozaki, K., Shinozaki, K., 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781-803.
|
Yu, F., Liang, K., Fang, T., Zhao, H., Han, X., Cai, M., Qiu, F., 2019. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol. J. 17, 2286-2298.
|
Zeng, R., Li, Z., Shi, Y., Fu, D., Yin, P., Cheng, J., Jiang, C., Yang, S., 2021. Natural variation in a type-A response regulator confers maize chilling tolerance. Nat. Commun. 12, 4713.
|
Zhang, H., Zhu, J., Gong, Z., Zhu, J.K., 2022. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104-119.
|
Zhao, L., Yan, J., Xiang, Y., Sun, Y., Zhang, A., 2021. ZmWRKY104 transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced antioxidant defense and enhance drought tolerance in maize. Biology 10, 893.
|
Zheng, C., Jiang, D., Liu, F., Dai, T., Jing, Q., Cao, W., 2009. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 176, 575-582.
|
Zhou, W., Chen, F., Meng, Y., Chandrasekaran, U., Luo, X., Yang, W., Shu, K., 2020a. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiol. Biochem. 148, 228-236.
|
Zhou, X., Xiang, Y., Li, C., Yu, G., 2020b. Modulatory role of reactive oxygen species in root development in model plant of Arabidopsis thaliana. Front. Plant Sci. 11, 485932.
|