8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 9
Sep.  2024
Turn off MathJax
Article Contents

Achieving single-cell-resolution lineage tracing in zebrafish by continuous barcoding mutations during embryogenesis

doi: 10.1016/j.jgg.2024.04.004
Funds:

This work was supported by the National Key R&D Program of China (2021YFA1302500 and 2021YFA1302501) and the National Natural Science Foundation of China (32293190, 32293191, 31970570, and 32200492).

  • Received Date: 2024-03-03
  • Accepted Date: 2024-04-07
  • Rev Recd Date: 2024-04-03
  • Available Online: 2025-06-06
  • Publish Date: 2024-04-15
  • Unraveling the lineage relationships of all descendants from a zygote is fundamental to advancing our understanding of developmental and stem cell biology. However, existing cell barcoding technologies in zebrafish lack the resolution to capture the majority of cell divisions during embryogenesis. A recently developed method, a substitution mutation-aided lineage-tracing system (SMALT), successfully reconstructed high-resolution cell phylogenetic trees for Drosophila melanogaster. Here, we implement the SMALT system in zebrafish, recording a median of 14 substitution mutations on a one-kilobase-pair barcoding sequence for one-day post-fertilization embryos. Leveraging this system, we reconstruct four cell lineage trees for zebrafish fin cells, encompassing both original and regenerated fin. Each tree consists of hundreds of internal nodes with a median bootstrap support of 99%. Analysis of the obtained cell lineage trees reveals that regenerated fin cells mainly originate from cells in the same part of the fins. Through multiple times sampling germ cells from the same individual, we show the stability of the germ cell pool and the early separation of germ cell and somatic cell progenitors. Our system offers the potential for reconstructing high-quality cell phylogenies across diverse tissues, providing valuable insights into development and disease in zebrafish.
  • loading
  • Alemany, A., Florescu, M., Baron, C.S., Peterson-Maduro, J., Van Oudenaarden, A., 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556, 108-112.
    Barker, N., Van Es, J.H., Kuipers, J., Kujala, P., Van Den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al., 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007.
    Blum, N., Begemann, G., 2015. Osteoblast de- and redifferentiation are controlled by a dynamic response to retinoic acid during zebrafish fin regeneration. Development 142, 2894-2903.
    Bowling, S., Sritharan, D., Osorio, F.G., Nguyen, M., Cheung, P., Rodriguez-Fraticelli, A., Patel, S., Yuan, W.C., Fujiwara, Y., Li, B.E., et al., 2020. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1410-1422.
    Cole, L.K., Ross, L.S., 2001. Apoptosis in the developing zebrafish embryo. Dev. Biol. 240, 123-142.
    Deng, S., Gong, H., Zhang, D., Zhang, M., He, X., 2024. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments. Nat. Methods. doi: 10.1038/s41592-024-02189-7.
    Hou, Y., Lee, H.J., Chen, Y., Ge, J., Osman, F.O.I., McAdow, A.R., Mokalled, M.H., Johnson, S.L., Zhao, G., Wang, T., 2020. Cellular diversity of the regenerating caudal fin. Sci. Adv. 6, eaba2084.
    Kawakami, K., 2007. Tol2: A versatile gene transfer vector in vertebrates. Genome Biol. 8, 1-10.
    Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., Nusslein-Volhard, C., 2000. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Bio. 149, 875-888.
    Kretzschmar, K., Watt, F.M., 2012. Lineage tracing. Cell.
    Kwan, K.M., Fujimoto, E., Grabher, C., Mangum, B.D., Hardy, M.E., Campbell, D.S., Parant, J.M., Yost, H.J., Kanki, J.P., Chien, C. B., 2007. The Tol2kit: A multisite gateway-based construction Kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088-3099.
    Lee, Y., Grill, S., Sanchez, A., Murphy-Ryan, M., Poss, K.D., 2005. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration. Development 132, 5173-5183.
    Li, L., Bowling, S., McGeary, S.E., Yu, Q., Lemke, B., Alcedo, K., Jia, Y., Liu, X., Ferreira, M., Klein, A.M., et al., 2023. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. Cell 186, 5183-5199.
    Liu, K., Deng, S., Ye, C., Yao, Z., Wang, J., Gong, H., Liu, L., He, X., 2021. Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nat. Methods 18, 1506-1514.
    Lu, R., Neff, N.F., Quake, S.R., Weissman, I.L., 2011. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29, 928-933.
    Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., Lanfear, R., Teeling, E., 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530-1534.
    Mosimann, C., Kaufman, C.K., Li, P., Pugach, E.K., Tamplin, O.J., Zon, L.I., 2011. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138, 169-177.
    Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.
    Pei, W., Feyerabend, T.B., Rossler, J., Wang, X., Postrach, D., Busch, K., Rode, I., Klapproth, K., Dietlein, N., Quedenau, C., et al 2017. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456-460.
    Petrie, T.A., Strand, N.S., Tsung-Yang, C., Rabinowitz, J.S., Moon, R.T., 2014. Macrophages modulate adult zebrafish tail fin regeneration. Development 141, 2581-2591.
    Pfefferli, C., Jazwinska, A., 2015. The art of fin regeneration in zebrafish. Regeneration 2, 72-83.
    Poss, K.D., Shen, J., Nechiporuk, A., McMahon, G., Thisse, B., Thisse, C., Keating, M.T., 2000. Roles for Fgf signaling during zebrafish fin regeneration. Dev. Biol. 222, 347-358.
    Raj, B., Wagner, D.E., McKenna, A., Pandey, S., Klein, A.M., Shendure, J., Gagnon, J.A., Schier, A.F., 2018. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 36, 442-450.
    Raz, E., 2003. Primordial germ-cell development: The zebrafish perspective. Nat Rev Genet. 4, 690-700.
    Rodriguez-Fraticelli, A.E., Wolock, S.L., Weinreb, C.S., Panero, R., Patel, S.H., Jankovic, M., Sun, J., Calogero, R.A., Klein, A.M., Camargo, F.D., 2018. Clonal analysis of lineage fate in native haematopoiesis. Nature 553, 212-216.
    Salipante, S.J., Horwitz, M.S., 2006. Phylogenetic fate mapping. Proc Natl Acad Sci U S A 103, 5448-5453.
    Sehring, I.M., Weidinger, G., 2020. Recent advancements in understanding fin regeneration in zebrafish. Wiley Interdiscip. Rev. Dev. Biol. 9, e367.
    Spanjaard, B., Hu, B., Mitic, N., Olivares-Chauvet, P., Janjuha, S., Ninov, N., Junker, J.P., 2018. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469-473.
    Sulston, J.E., Horvitz, H.R., 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110-156.
    Sulston, J.E., Schierenberg, E., White, J.G., Thomson, J.N., 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64-119.
    Tzung, K.W., Goto, R., Saju, J.M., Sreenivasan, R., Saito, T., Arai, K., Yamaha, E., Hossain, M.S., Calvert, M.E.K., Orban, L., 2015. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Reports 4, 61-73.
    VanHorn, S., Morris, S.A., 2021. Next-generation lineage tracing and fate mapping to interrogate development. Dev. Cell. 56, 7-21.
    Wagner, D.E., Klein, A.M., 2020. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410-427.
    Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., Klein, A.M., 2018. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360, 981-987.
    Walker, C., Streisinger, G., 1983. Induction of mutations by γ-rays in pregonial germ cells of zebrafish embryos. Genetics 103, 125-136.
    Whitehead, G.G., Makino, S., Lien, C.L., Keating, M.T., 2005. Developmental biology: fgf20 is essential for initiating zebrafish fin regeneration. Science 310, 1957-1960.
    Xu, S., Dai, Z., Guo, P., Fu, X., Liu, S., Zhou, L., Tang, W., Feng, T., Chen, M., Zhan, L., Wu, T., Hu, E., Jiang, Y., Bo, X., Yu, G., 2021. GgtreeExtra: Compact Visualization of Richly Annotated Phylogenetic Data. Mol. Biol. Evol. 38, 4039-4042.
    Yoon, C., Kawakami, K., Hopkins, N., 1997. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124.
    Yu, G., Lam, T.T.Y., Zhu, H., Guan, Y., 2018. Two methods for mapping and visualizing associated data on phylogeny using GGTree. Mol. Biol. Evol. 35, 3041-3043.
    Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T.Y., 2017. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return