8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 8
Aug.  2024
Turn off MathJax
Article Contents

Two imprinted genes primed by DEMETER in the central cell and activated by WRKY10 in the endosperm

doi: 10.1016/j.jgg.2024.04.003
Funds:

This work was supported by the National Natural Science Foundation of China (31570322).

  • Received Date: 2024-03-28
  • Accepted Date: 2024-04-02
  • Rev Recd Date: 2024-04-02
  • Available Online: 2025-06-06
  • Publish Date: 2024-04-08
  • The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring. This process is believed to be evolutionarily associated with genomic imprinting, resulting in parentally biased allelic gene expression. Beyond Fertilization Independent Seed (FIS) genes, the number of imprinted genes involved in early endosperm development and seed size determination remains limited. This study introduces early endosperm-expressed HAIKU (IKU) downstream Candidate F-box 1 (ICF1) and ICF2 as maternally expressed imprinted genes (MEGs) in Arabidopsis thaliana. Although these genes are also demethylated by DEMETER (DME) in the central cell, their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes. Instead, ICF maternal alleles carry pre-established hypomethylation in their promoters, priming them for activation by the WRKY10 transcription factor in the endosperm. On the contrary, paternal alleles are predominantly suppressed by CG methylation. Furthermore, we find that ICF genes partially contribute to the small seed size observed in iku mutants. Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes, which was previously not fully recognized. Therefore, the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.
  • loading
  • Autran, D., Baroux, C., Raissig, M.T., Lenormand, T., Wittig, M., Grob, S., Steimer, A., Barann, M., Klostermeier, U.C., Leblanc, O., et al., 2011. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145, 707-719.
    Batista, R.A., Kohler, C., 2020. Genomic imprinting in plants-revisiting existing models. Genes Dev. 34, 24-36.
    Belmonte, M.F., Kirkbride, R.C., Stone, S.L., Pelletier, J.M., Bui, A.Q., Yeung, E.C., Hashimoto, M., Fei, J., Harada, C.M., Munoz, M.D., et al., 2013. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc. Natl. Acad. Sci. U. S. A. 110, E435-E444.
    Berger, F., Vu, T.M., Li, J., Chen, B., 2012. Hypothesis: selection of imprinted genes is driven by silencing deleterious gene activity in somatic tissues. Cold Spring Harb. Symp. Quant. Biol. 77, 23-29.
    Bleckmann, A., Alter, S., Dresselhaus, T., 2014. The beginning of a seed: regulatory mechanisms of double fertilization. Front. Plant Sci. 5, 452.
    Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K.D., Ovcharenko, I., Pachter, L., Rubin, E.M., 2003. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391-1394.
    Choi, Y., Gehring, M., Johnson, L., Hannon, M., Harada, J.J., Goldberg, R.B., Jacobsen, S.E., Fischer, R.L., 2002. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33-42.
    Clough, S.J., Bent, A.F., 1998. Floral dip-a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
    Dilkes, B.P., Comai, L., 2004. A differential dosage hypothesis for parental effects in seed development. Plant Cell 16, 3174-3180.
    Feil, R., Berger, F., 2007. Convergent evolution of genomic imprinting in plants and mammals. Trends Genet. 23, 192-199.
    Feng, S., Jacobsen, S.E., Reik, W., 2010. Epigenetic reprogramming in plant and animal development. Science 330, 622-627.
    Gagne, J.M., Downes, B.P., Shiu, S.H., Durski, A.M., Vierstra, R.D., 2002. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 99, 11519-11524.
    Garcia-Aguilar, M., Gillmor, C.S., 2015. Zygotic genome activation and imprinting: parent-of-origin gene regulation in plant embryogenesis. Curr. Opin. Plant Biol. 27, 29-35.
    Garcia, D., Fitz Gerald, J.N., Berger, F., 2005. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. Plant Cell 17, 52-60.
    Garcia, D., Saingery, V., Chambrier, P., Mayer, U., Jurgens, G., Berger, F., 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol. 131, 1661-1670.
    Gehring, M., Huh, J.H., Hsieh, T.F., Penterman, J., Choi, Y., Harada, J.J., Goldberg, R.B., Fischer, R.L., 2006. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124, 495-506.
    Haig, D., 2013. Kin conflict in seed development: an interdependent but fractious collective. Annu. Rev. Cell Dev. Biol. 29, 189-211.
    Haig, D., Westoby, M., 1989. Parent-specific gene expression and the triploid endosperm. Am. Nat. 134, 147-155.
    Haudry, A., Platts, A.E., Vello, E., Hoen, D.R., Leclercq, M., Williamson, R.J., Forczek, E., Joly-Lopez, Z., Steffen, J.G., Hazzouri, K.M., et al., 2013. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45, 891-898.
    Hsieh, T.F., Ibarra, C.A., Silva, P., Zemach, A., Eshed-Williams, L., Fischer, R.L., Zilberman, D., 2009. Genome-wide demethylation of Arabidopsis endosperm. Science 324, 1451-1454.
    Hsieh, T.F., Shin, J., Uzawa, R., Silva, P., Cohen, S., Bauer, M.J., Hashimoto, M., Kirkbride, R.C., Harada, J.J., Zilberman, D., et al., 2011. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc. Natl. Acad. Sci. U. S. A. 108, 1755-1762.
    Hu, T.T., Pattyn, P., Bakker, E.G., Cao, J., Cheng, J.-F., Clark, R.M., Fahlgren, N., Fawcett, J.A., Grimwood, J., Gundlach, H., et al., 2011. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476-481.
    Hua, Z., Zou, C., Shiu, S.-H., Vierstra, R.D., 2011. Phylogenetic Comparison of F-Box (FBX) Gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS One 6, e16219.
    Ibarra, C.A., Feng, X., Schoft, V.K., Hsieh, T.F., Uzawa, R., Rodrigues, J.A., Zemach, A., Chumak, N., Machlicova, A., Nishimura, T., et al., 2012. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360-1364.
    Jullien, P.E., Kinoshita, T., Ohad, N., Berger, F., 2006. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18, 1360-1372.
    Kagale, S., Robinson, S.J., Nixon, J., Xiao, R., Huebert, T., Condie, J., Kessler, D., Clarke, W.E., Edger, P.P., Links, M.G., et al., 2014. Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell 26, 2777-2791.
    Kawashima, T., Berger, F., 2014. Epigenetic reprogramming in plant sexual reproduction. Nat. Rev. Genet. 15, 613-624.
    Kinoshita, T., Miura, A., Choi, Y., Kinoshita, Y., Cao, X., Jacobsen, S.E., Fischer, R.L., Kakutani, T., 2004. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303, 521-523.
    Kohler, C., Wolff, P., Spillane, C., 2012. Epigenetic mechanisms underlying genomic imprinting in plants. Annu. Rev. Plant Biol. 63, 331-352.
    Kuroda, H., Yanagawa, Y., Takahashi, N., Horii, Y., Matsui, M., 2012. A comprehensive analysis of interaction and localization of Arabidopsis SKP1-LIKE (ASK) and F-Box (FBX) proteins. PLoS One 7, e50009.
    Li, J., Berger, F., 2012. Endosperm: food for humankind and fodder for scientific discoveries. New Phytol. 195, 290-305.
    Li, J., Nie, X., Tan, J.L., Berger, F., 2013. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 110, 15479-15484.
    Luo, M., Dennis, E.S., Berger, F., Peacock, W.J., Chaudhury, A., 2005. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 102, 17531-17536.
    Park, K., Kim, M.Y., Vickers, M., Park, J.S., Hyun, Y., Okamoto, T., Zilberman, D., Fischer, R.L., Feng, X., Choi, Y., et al., 2016. DNA demethylation is initiated in the central cells of Arabidopsis and rice. Proc. Natl. Acad. Sci. U. S. A. 113, 15138-15143.
    Proost, S., Pattyn, P., Gerats, T., Van de Peer, Y., 2011. Journey through the past: 150 million years of plant genome evolution. Plant J. 66, 58-65.
    Rodrigues, J.A., Zilberman, D., 2015. Evolution and function of genomic imprinting in plants. Genes Dev. 29, 2517-2531.
    Satyaki, P.R., Gehring, M., 2017. DNA methylation and imprinting in plants: machinery and mechanisms. Crit. Rev. Biochem. Mol. Biol. 52, 163-175.
    Satyaki, P.R.V., Gehring, M., 2022. RNA Pol IV induces antagonistic parent-of-origin effects on Arabidopsis endosperm. PLoS Biol. 20.
    Scott, R.J., Spielman, M., Bailey, J., Dickinson, H.G., 1998. Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125, 3329-3341.
    Skaar, J.R., Pagan, J.K., Pagano, M., 2013. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 14, 369-381.
    Stroud, H., Do, T., Du, J., Zhong, X., Feng, S., Johnson, L., Patel, D.J., Jacobsen, S.E., 2014. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 21, 64-72.
    Tucci, V., Isles, A.R., Kelsey, G., Ferguson-Smith, A.C., Erice Imprinting, G., 2019. Genomic imprinting and physiological processes in mammals. Cell 176, 952-965.
    Vu, T.M., Nakamura, M., Calarco, J.P., Susaki, D., Lim, P.Q., Kinoshita, T., Higashiyama, T., Martienssen, R.A., Berger, F., 2013. RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 140, 2953-2960.
    Wang, A., Garcia, D., Zhang, H., Feng, K., Chaudhury, A., Berger, F., Peacock, W.J., Dennis, E.S., Luo, M., 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. Plant J. 63, 670-679.
    Wolf, J.B., Hager, R., 2006. A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol. 4, e380.
    Xi, X., Hu, Z., Nie, X., Meng, M., Xu, H., Li, J., 2021. Cross inhibition of MPK10 and WRKY10 participating in the growth of endosperm in Arabidopsis thaliana. Front. Plant Sci. 12, 640346.
    Xiao, W., Brown, R.C., Lemmon, B.E., Harada, J.J., Goldberg, R.B., Fischer, R.L., 2006. Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol. 142, 1160-1168.
    Xiong, H., Wang, W., Sun, M.X., 2021. Endosperm development is an autonomously programmed process independent of embryogenesis. Plant Cell 33, 1151-1160.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return