8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 7
Jul.  2024
Turn off MathJax
Article Contents

The characterization of protein lactylation in relation to cardiac metabolic reprogramming in neonatal mouse hearts

doi: 10.1016/j.jgg.2024.02.009
  • Received Date: 2024-01-06
  • Accepted Date: 2024-02-28
  • Rev Recd Date: 2024-02-18
  • Available Online: 2025-06-06
  • Publish Date: 2024-03-11
  • In mammals, the neonatal heart can regenerate upon injury within a short time after birth, while adults lose this ability. Metabolic reprogramming has been demonstrated to be critical for cardiomyocyte proliferation in the neonatal heart. Here, we reveal that cardiac metabolic reprogramming could be regulated by altering global protein lactylation. By performing 4D label-free proteomics and lysine lactylation (Kla) omics analyses in mouse hearts at postnatal days 1, 5, and 7, 2297 Kla sites from 980 proteins are identified, among which 1262 Kla sites from 409 proteins are quantified. Functional clustering analysis reveals that the proteins with altered Kla sites are mainly involved in metabolic processes. The expression and Kla levels of proteins in glycolysis show a positive correlation while a negative correlation in fatty acid oxidation. Furthermore, we verify the Kla levels of several differentially modified proteins, including ACAT1, ACADL, ACADVL, PFKM, PKM, and NPM1. Overall, our study reports a comprehensive Kla map in the neonatal mouse heart, which will help to understand the regulatory network of metabolic reprogramming and cardiac regeneration.
  • loading
  • Angrand, P.O., Segura, I., Volkel, P., Ghidelli, S., Terry, R., Brajenovic, M., Vintersten, K., Klein, R., Superti-Furga, G., Drewes, G., et al., 2006. Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Mol. Cell Proteomics 5, 2211-2227.
    Aricthota, S., Rana, P.P., Haldar, D., 2022. Histone acetylation dynamics in repair of DNA double-strand breaks. Front. Genet. 13, 926577.
    Badolia, R., Ramadurai, D.K.A., Abel, E.D., Ferrin, P., Taleb, I., Shankar, T.S., Krokidi, A.T., Navankasattusas, S., McKellar, S.H., Yin, M., et al., 2020. The Role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure. Circulation 142, 259-274.
    Bartelds, B., Gratama, J.W., Knoester, H., Takens, J., Smid, G.B., Aarnoudse, J.G., Heymans, H.S., Kuipers, J.R., 1998. Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am. J. Physiol. 274, H1962-1969.
    Bartelds, B., Knoester, H., Beaufort-Krol, G.C., Smid, G.B., Takens, J., Zijlstra, W.G., Heymans, H.S., Kuipers, J.R., 1999. Myocardial lactate metabolism in fetal and newborn lambs. Circulation 99, 1892-1897.
    Bartelds, B., Knoester, H., Smid, G.B., Takens, J., Visser, G.H., Penninga, L., van der Leij, F.R., Beaufort-Krol, G.C., Zijlstra, W.G., Heymans, H.S., et al., 2000. Perinatal changes in myocardial metabolism in lambs. Circulation 102, 926-931.
    Chong, D., Gu, Y., Zhang, T., Xu, Y., Bu, D., Chen, Z., Xu, N., Li, L., Zhu, X., Wang, H., et al., 2022. Neonatal ketone body elevation regulates postnatal heart development by promoting cardiomyocyte mitochondrial maturation and metabolic reprogramming. Cell Discov. 8, 106.
    Cluntun, A.A., Huang, H., Dai, L., Liu, X., Zhao, Y., Locasale, J.W., 2015. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab. 3, 10.
    Doppler, S.A., Deutsch, M.A., Serpooshan, V., Li, G., Dzilic, E., Lange, R., Krane, M., Wu, S.M., 2017. Mammalian heart regeneration: The race to the finish line. Circ. Res. 120, 630-632.
    Du, J., Zheng, L., Gao, P., Yang, H., Yang, W.J., Guo, F., Liang, R., Feng, M., Wang, Z., Zhang, Z., et al., 2022. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell 29, 545-558.
    Du, S., Zhang, X., Jia, Y., Peng, P., Kong, Q., Jiang, S., Li, Y., Li, C., Ding, Z., Liu, L., 2023. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes. Theranostics 13, 3856-3871.
    Fan, M., Yang, K., Wang, X., Chen, L., Gill, P.S., Ha, T., Liu, L., Lewis, N.H., Williams, D.L., Li, C., 2023. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci. Adv. 9, eadc9465.
    Fernandez-Ruiz, I., 2023. Metabolic reprogramming unlocks the regenerative potential of the heart. Nat. Rev. Cardiol. 20, 795.
    Ganguly, S., Weller, J.L., Ho, A., Chemineau, P., Malpaux, B., Klein, D.C., 2005. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc. Natl. Acad. Sci. U. S. A. 102, 1222-1227.
    Gao, R., Li, Y., Xu, Z., Zhang, F., Xu, J., Hu, Y., Yin, J., Yang, K., Sun, L., Wang, Q., et al., 2023. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology 78, 1800-1815.
    Ghosh-Choudhary, S., Finkel, T., 2023. Lactylation regulates cardiac function. Cell Res. 33, 653-654.
    Gorkin, D.U., Barozzi, I., Zhao, Y., Zhang, Y., Huang, H., Lee, A.Y., Li, B., Chiou, J., Wildberg, A., Ding, B., et al., 2020. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744-751.
    Hagihara, H., Shoji, H., Otabi, H., Toyoda, A., Katoh, K., Namihira, M., Miyakawa, T., 2021. Protein lactylation induced by neural excitation. Cell Rep. 37, 109820.
    Heidenreich, P.A., Trogdon, J.G., Khavjou, O.A., Butler, J., Dracup, K., Ezekowitz, M.D., Finkelstein, E.A., Hong, Y., Johnston, S.C., Khera, A., et al., 2011. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933-944.
    Hermeking, H., Benzinger, A., 2006. 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol. 16, 183-192.
    Irizarry-Caro, R.A., McDaniel, M.M., Overcast, G.R., Jain, V.G., Troutman, T.D., Pasare, C., 2020. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc. Natl. Acad. Sci. U. S. A. 117, 30628-30638.
    Izzo, L.T., Wellen, K.E., 2019. Histone lactylation links metabolism and gene regulation. Nature 574, 492-493.
    Jia, M., Yue, X., Sun, W., Zhou, Q., Chang, C., Gong, W., Feng, J., Li, X., Zhan, R., Mo, K., et al., 2023. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci. Adv. 9, eadg4993.
    Johannsson, E., Lunde, P.K., Heddle, C., Sjaastad, I., Thomas, M.J., Bergersen, L., Halestrap, A.P., Blackstad, T.W., Ottersen, O.P., Sejersted, O.M., 2001. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104, 729-734.
    Keating, S.T., El-Osta, A., 2015. Epigenetics and metabolism. Circ. Res. 116, 715-736.
    Kolwicz, S.C., Jr., Purohit, S., Tian, R., 2013. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603-616.
    Koprinarova, M., Schnekenburger, M., Diederich, M., 2016. Role of histone acetylation in cell cycle regulation. Curr. Top. Med. Chem. 16, 732-744.
    Kordalewska, M., Markuszewski, M.J., 2015. Metabolomics in cardiovascular diseases. J. Pharm. Biomed. Anal. 113, 121-136.
    Lehman, J.J., Kelly, D.P., 2002. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin. Exp. Pharmacol. Physiol. 29, 339-345.
    Li, J., Zhang, J., Hou, W., Yang, X., Liu, X., Zhang, Y., Gao, M., Zong, M., Dong, Z., Liu, Z., et al., 2022. Metabolic control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos. Cell Discov. 8, 96.
    Li, L., Chen, K., Wang, T., Wu, Y., Xing, G., Chen, M., Hao, Z., Zhang, C., Zhang, J., Ma, B., et al., 2020. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nat. Metab. 2, 882-892.
    Li, X., Wu, F., Gunther, S., Looso, M., Kuenne, C., Zhang, T., Wiesnet, M., Klatt, S., Zukunft, S., Fleming, I., et al., 2023. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 622, 619-626.
    Li, X., Yang, Y., Zhang, B., Lin, X., Fu, X., An, Y., Zou, Y., Wang, J.X., Wang, Z., Yu, T., 2022. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7, 305.
    Liberti, M.V., Locasale, J.W., 2020. Histone lactylation: a new role for glucose metabolism. Trends Biochem. Sci. 45, 179-182.
    Liu, S., Tang, L., Zhao, X., Nguyen, B., Heallen, T.R., Li, M., Wang, J., Wang, J., Martin, J.F., 2021. Yap promotes noncanonical Wnt signals from cardiomyocytes for heart regeneration. Circ. Res. 129, 782-797.
    Magadum, A., Singh, N., Kurian, A.A., Munir, I., Mehmood, T., Brown, K., Sharkar, M.T.K., Chepurko, E., Sassi, Y., Oh, J.G., et al., 2020. Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation 141, 1249-1265.
    Merkuri, F., Rothstein, M., Simoes-Costa, M., 2024. Histone lactylation couples cellular metabolism with developmental gene regulatory networks. Nat. Commun. 15, 90.
    Moreno-Yruela, C., Zhang, D., Wei, W., Baek, M., Liu, W., Gao, J., Dankova, D., Nielsen, A.L., Bolding, J.E., Yang, L., et al., 2022. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci. Adv. 8, eabi6696.
    Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., et al., 2015. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392-402.
    Nakada, Y., Canseco, D.C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C.X., Shah, A.M., Zhang, H., Faber, J.E., Kinter, M.T., et al., 2017. Hypoxia induces heart regeneration in adult mice. Nature 541, 222-227.
    Nancolas, B., Guo, L., Zhou, R., Nath, K., Nelson, D.S., Leeper, D.B., Blair, I.A., Glickson, J.D., Halestrap, A.P., 2016. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochem. J. 473, 929-936.
    Nath, K., Guo, L., Nancolas, B., Nelson, D.S., Shestov, A.A., Lee, S.C., Roman, J., Zhou, R., Leeper, D.B., Halestrap, A.P., et al., 2016. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta. 1866, 151-162.
    Nitsch, S., Zorro Shahidian, L., Schneider, R., 2021. Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. EMBO Rep. 22, e52774.
    Padin-Iruegas, M.E., Misao, Y., Davis, M.E., Segers, V.F., Esposito, G., Tokunou, T., Urbanek, K., Hosoda, T., Rota, M., Anversa, P., et al., 2009. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120, 876-887.
    Pan, R.Y., He, L., Zhang, J., Liu, X., Liao, Y., Gao, J., Liao, Y., Yan, Y., Li, Q., Zhou, X., et al., 2022. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 34, 634-648 e636.
    Peoples, J.N., Saraf, A., Ghazal, N., Pham, T.T., Kwong, J.Q., 2019. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 51, 1-13.
    Perez-Riverol, Y., Bai, J., Bandla, C., Garcia-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D.J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., et al., 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543-D552.
    Piquereau, J., Ventura-Clapier, R., 2018. Maturation of cardiac energy metabolism during perinatal development. Front. Physiol. 9, 959.
    Pohjoismaki, J.L., Goffart, S., 2017. The role of mitochondria in cardiac development and protection. Free Radic. Biol. Med. 106, 345-354.
    Popov, I.K., Hiatt, S.M., Whalen, S., Keren, B., Ruivenkamp, C., van Haeringen, A., Chen, M.J., Cooper, G.M., Korf, B.R., Chang, C., 2019. A YWHAZ variant associated with cardiofaciocutaneous syndrome activates the RAF-ERK pathway. Front. Physiol. 10, 388.
    Porrello, E.R., Mahmoud, A.I., Simpson, E., Hill, J.A., Richardson, J.A., Olson, E.N., Sadek, H.A., 2011. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078-1080.
    Porrello, E.R., Mahmoud, A.I., Simpson, E., Johnson, B.A., Grinsfelder, D., Canseco, D., Mammen, P.P., Rothermel, B.A., Olson, E.N., Sadek, H.A., 2013. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. U. S. A. 110, 187-192.
    Rho, H., Terry, A.R., Chronis, C., Hay, N., 2023. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 35, 1406-1423.
    Roth, G.A., Mensah, G.A., Johnson, C.O., Addolorato, G., Ammirati, E., Baddour, L.M., Barengo, N.C., Beaton, A.Z., Benjamin, E.J., Benziger, C.P., et al., 2020. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982-3021.
    Singer, D., Muhlfeld, C., 2007. Perinatal adaptation in mammals: the impact of metabolic rate. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 780-784.
    Takahashi, E., Doi, K., 1998. Impact of diffusional oxygen transport on oxidative metabolism in the heart. Jpn J. Physiol. 48, 243-252.
    Tzahor, E., Poss, K.D., 2017. Cardiac regeneration strategies: staying young at heart. Science 356, 1035-1039.
    Uygur, A., Lee, R.T., 2016. Mechanisms of cardiac regeneration. Dev. Cell 36, 362-374.
    Verdone, L., Caserta, M., Di Mauro, E., 2005. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 83, 344-353.
    Wan, N., Wang, N., Yu, S., Zhang, H., Tang, S., Wang, D., Lu, W., Li, H., Delafield, D.G., Kong, Y., et al., 2022. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat. Methods 19, 854-864.
    Wang, N., Wang, W., Wang, X., Mang, G., Chen, J., Yan, X., Tong, Z., Yang, Q., Wang, M., Chen, L., et al., 2022. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ. Res. 131, 893-908.
    Wu, K., Fan, D., Zhao, H., Liu, Z., Hou, Z., Tao, W., Yu, G., Yuan, S., Zhu, X., Kang, M., et al., 2023. Dynamics of histone acetylation during human early embryogenesis. Cell Discov. 9, 29.
    Xu, J., Xu, X., Si, L., Xue, L., Zhang, S., Qin, J., Wu, Y., Shao, Y., Chen, Y., Wang, X., 2013. Intracellular lactate signaling cascade in atrial remodeling of mitral valvular patients with atrial fibrillation. J. Cardiothorac. Surg. 8, 34.
    Yang, Z., Yan, C., Ma, J., Peng, P., Ren, X., Cai, S., Shen, X., Wu, Y., Zhang, S., Wang, X., et al., 2023. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat. Metab. 5, 61-79.
    Ye, L., Jiang, Y., Zhang, M., 2022. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev. 68, 81-92.
    Yi, L., Tang, D., Xiang, X., Xiao, C., Tang, H., Huang, H., 2024. New mechanisms: from lactate to lactylation to rescue heart failure. Biosci. Trends. https://doi.org/10.5582/bst.2024.01000.
    Yucel, N., Wang, Y.X., Mai, T., Porpiglia, E., Lund, P.J., Markov, G., Garcia, B.A., Bendall, S.C., Angelo, M., Blau, H.M., 2019. Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep. 27, 3939-3955.
    Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., et al., 2019. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575-580.
    Zhang, N., Jiang, N., Yu, L., Guan, T., Sang, X., Feng, Y., Chen, R., Chen, Q., 2021. Protein lactylation critically regulates energy metabolism in the protozoan parasite trypanosoma brucei. Front. Cell Dev. Biol. 9, 719720.
    Zhang, N., Zhang, Y., Xu, J., Wang, P., Wu, B., Lu, S., Lu, X., You, S., Huang, X., Li, M., et al., 2023. α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 33, 679-698.
    Zhou, B., Tian, R., 2018. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest. 128, 3716-3726.
    Zhou, J., Sun, L., Chen, L., Liu, S., Zhong, L., Cui, M., 2019. Comprehensive metabolomic and proteomic analyses reveal candidate biomarkers and related metabolic networks in atrial fibrillation. Metabolomics 15, 96.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return