Angrand, P.O., Segura, I., Volkel, P., Ghidelli, S., Terry, R., Brajenovic, M., Vintersten, K., Klein, R., Superti-Furga, G., Drewes, G., et al., 2006. Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Mol. Cell Proteomics 5, 2211-2227.
|
Aricthota, S., Rana, P.P., Haldar, D., 2022. Histone acetylation dynamics in repair of DNA double-strand breaks. Front. Genet. 13, 926577.
|
Badolia, R., Ramadurai, D.K.A., Abel, E.D., Ferrin, P., Taleb, I., Shankar, T.S., Krokidi, A.T., Navankasattusas, S., McKellar, S.H., Yin, M., et al., 2020. The Role of nonglycolytic glucose metabolism in myocardial recovery upon mechanical unloading and circulatory support in chronic heart failure. Circulation 142, 259-274.
|
Bartelds, B., Gratama, J.W., Knoester, H., Takens, J., Smid, G.B., Aarnoudse, J.G., Heymans, H.S., Kuipers, J.R., 1998. Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am. J. Physiol. 274, H1962-1969.
|
Bartelds, B., Knoester, H., Beaufort-Krol, G.C., Smid, G.B., Takens, J., Zijlstra, W.G., Heymans, H.S., Kuipers, J.R., 1999. Myocardial lactate metabolism in fetal and newborn lambs. Circulation 99, 1892-1897.
|
Bartelds, B., Knoester, H., Smid, G.B., Takens, J., Visser, G.H., Penninga, L., van der Leij, F.R., Beaufort-Krol, G.C., Zijlstra, W.G., Heymans, H.S., et al., 2000. Perinatal changes in myocardial metabolism in lambs. Circulation 102, 926-931.
|
Chong, D., Gu, Y., Zhang, T., Xu, Y., Bu, D., Chen, Z., Xu, N., Li, L., Zhu, X., Wang, H., et al., 2022. Neonatal ketone body elevation regulates postnatal heart development by promoting cardiomyocyte mitochondrial maturation and metabolic reprogramming. Cell Discov. 8, 106.
|
Cluntun, A.A., Huang, H., Dai, L., Liu, X., Zhao, Y., Locasale, J.W., 2015. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab. 3, 10.
|
Doppler, S.A., Deutsch, M.A., Serpooshan, V., Li, G., Dzilic, E., Lange, R., Krane, M., Wu, S.M., 2017. Mammalian heart regeneration: The race to the finish line. Circ. Res. 120, 630-632.
|
Du, J., Zheng, L., Gao, P., Yang, H., Yang, W.J., Guo, F., Liang, R., Feng, M., Wang, Z., Zhang, Z., et al., 2022. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell 29, 545-558.
|
Du, S., Zhang, X., Jia, Y., Peng, P., Kong, Q., Jiang, S., Li, Y., Li, C., Ding, Z., Liu, L., 2023. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes. Theranostics 13, 3856-3871.
|
Fan, M., Yang, K., Wang, X., Chen, L., Gill, P.S., Ha, T., Liu, L., Lewis, N.H., Williams, D.L., Li, C., 2023. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci. Adv. 9, eadc9465.
|
Fernandez-Ruiz, I., 2023. Metabolic reprogramming unlocks the regenerative potential of the heart. Nat. Rev. Cardiol. 20, 795.
|
Ganguly, S., Weller, J.L., Ho, A., Chemineau, P., Malpaux, B., Klein, D.C., 2005. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc. Natl. Acad. Sci. U. S. A. 102, 1222-1227.
|
Gao, R., Li, Y., Xu, Z., Zhang, F., Xu, J., Hu, Y., Yin, J., Yang, K., Sun, L., Wang, Q., et al., 2023. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology 78, 1800-1815.
|
Ghosh-Choudhary, S., Finkel, T., 2023. Lactylation regulates cardiac function. Cell Res. 33, 653-654.
|
Gorkin, D.U., Barozzi, I., Zhao, Y., Zhang, Y., Huang, H., Lee, A.Y., Li, B., Chiou, J., Wildberg, A., Ding, B., et al., 2020. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744-751.
|
Hagihara, H., Shoji, H., Otabi, H., Toyoda, A., Katoh, K., Namihira, M., Miyakawa, T., 2021. Protein lactylation induced by neural excitation. Cell Rep. 37, 109820.
|
Heidenreich, P.A., Trogdon, J.G., Khavjou, O.A., Butler, J., Dracup, K., Ezekowitz, M.D., Finkelstein, E.A., Hong, Y., Johnston, S.C., Khera, A., et al., 2011. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933-944.
|
Hermeking, H., Benzinger, A., 2006. 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol. 16, 183-192.
|
Irizarry-Caro, R.A., McDaniel, M.M., Overcast, G.R., Jain, V.G., Troutman, T.D., Pasare, C., 2020. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation. Proc. Natl. Acad. Sci. U. S. A. 117, 30628-30638.
|
Izzo, L.T., Wellen, K.E., 2019. Histone lactylation links metabolism and gene regulation. Nature 574, 492-493.
|
Jia, M., Yue, X., Sun, W., Zhou, Q., Chang, C., Gong, W., Feng, J., Li, X., Zhan, R., Mo, K., et al., 2023. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci. Adv. 9, eadg4993.
|
Johannsson, E., Lunde, P.K., Heddle, C., Sjaastad, I., Thomas, M.J., Bergersen, L., Halestrap, A.P., Blackstad, T.W., Ottersen, O.P., Sejersted, O.M., 2001. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104, 729-734.
|
Keating, S.T., El-Osta, A., 2015. Epigenetics and metabolism. Circ. Res. 116, 715-736.
|
Kolwicz, S.C., Jr., Purohit, S., Tian, R., 2013. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ. Res. 113, 603-616.
|
Koprinarova, M., Schnekenburger, M., Diederich, M., 2016. Role of histone acetylation in cell cycle regulation. Curr. Top. Med. Chem. 16, 732-744.
|
Kordalewska, M., Markuszewski, M.J., 2015. Metabolomics in cardiovascular diseases. J. Pharm. Biomed. Anal. 113, 121-136.
|
Lehman, J.J., Kelly, D.P., 2002. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin. Exp. Pharmacol. Physiol. 29, 339-345.
|
Li, J., Zhang, J., Hou, W., Yang, X., Liu, X., Zhang, Y., Gao, M., Zong, M., Dong, Z., Liu, Z., et al., 2022. Metabolic control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos. Cell Discov. 8, 96.
|
Li, L., Chen, K., Wang, T., Wu, Y., Xing, G., Chen, M., Hao, Z., Zhang, C., Zhang, J., Ma, B., et al., 2020. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade. Nat. Metab. 2, 882-892.
|
Li, X., Wu, F., Gunther, S., Looso, M., Kuenne, C., Zhang, T., Wiesnet, M., Klatt, S., Zukunft, S., Fleming, I., et al., 2023. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 622, 619-626.
|
Li, X., Yang, Y., Zhang, B., Lin, X., Fu, X., An, Y., Zou, Y., Wang, J.X., Wang, Z., Yu, T., 2022. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7, 305.
|
Liberti, M.V., Locasale, J.W., 2020. Histone lactylation: a new role for glucose metabolism. Trends Biochem. Sci. 45, 179-182.
|
Liu, S., Tang, L., Zhao, X., Nguyen, B., Heallen, T.R., Li, M., Wang, J., Wang, J., Martin, J.F., 2021. Yap promotes noncanonical Wnt signals from cardiomyocytes for heart regeneration. Circ. Res. 129, 782-797.
|
Magadum, A., Singh, N., Kurian, A.A., Munir, I., Mehmood, T., Brown, K., Sharkar, M.T.K., Chepurko, E., Sassi, Y., Oh, J.G., et al., 2020. Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation 141, 1249-1265.
|
Merkuri, F., Rothstein, M., Simoes-Costa, M., 2024. Histone lactylation couples cellular metabolism with developmental gene regulatory networks. Nat. Commun. 15, 90.
|
Moreno-Yruela, C., Zhang, D., Wei, W., Baek, M., Liu, W., Gao, J., Dankova, D., Nielsen, A.L., Bolding, J.E., Yang, L., et al., 2022. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci. Adv. 8, eabi6696.
|
Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., et al., 2015. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 21, 392-402.
|
Nakada, Y., Canseco, D.C., Thet, S., Abdisalaam, S., Asaithamby, A., Santos, C.X., Shah, A.M., Zhang, H., Faber, J.E., Kinter, M.T., et al., 2017. Hypoxia induces heart regeneration in adult mice. Nature 541, 222-227.
|
Nancolas, B., Guo, L., Zhou, R., Nath, K., Nelson, D.S., Leeper, D.B., Blair, I.A., Glickson, J.D., Halestrap, A.P., 2016. The anti-tumour agent lonidamine is a potent inhibitor of the mitochondrial pyruvate carrier and plasma membrane monocarboxylate transporters. Biochem. J. 473, 929-936.
|
Nath, K., Guo, L., Nancolas, B., Nelson, D.S., Shestov, A.A., Lee, S.C., Roman, J., Zhou, R., Leeper, D.B., Halestrap, A.P., et al., 2016. Mechanism of antineoplastic activity of lonidamine. Biochim. Biophys. Acta. 1866, 151-162.
|
Nitsch, S., Zorro Shahidian, L., Schneider, R., 2021. Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. EMBO Rep. 22, e52774.
|
Padin-Iruegas, M.E., Misao, Y., Davis, M.E., Segers, V.F., Esposito, G., Tokunou, T., Urbanek, K., Hosoda, T., Rota, M., Anversa, P., et al., 2009. Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120, 876-887.
|
Pan, R.Y., He, L., Zhang, J., Liu, X., Liao, Y., Gao, J., Liao, Y., Yan, Y., Li, Q., Zhou, X., et al., 2022. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab. 34, 634-648 e636.
|
Peoples, J.N., Saraf, A., Ghazal, N., Pham, T.T., Kwong, J.Q., 2019. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 51, 1-13.
|
Perez-Riverol, Y., Bai, J., Bandla, C., Garcia-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D.J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., et al., 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543-D552.
|
Piquereau, J., Ventura-Clapier, R., 2018. Maturation of cardiac energy metabolism during perinatal development. Front. Physiol. 9, 959.
|
Pohjoismaki, J.L., Goffart, S., 2017. The role of mitochondria in cardiac development and protection. Free Radic. Biol. Med. 106, 345-354.
|
Popov, I.K., Hiatt, S.M., Whalen, S., Keren, B., Ruivenkamp, C., van Haeringen, A., Chen, M.J., Cooper, G.M., Korf, B.R., Chang, C., 2019. A YWHAZ variant associated with cardiofaciocutaneous syndrome activates the RAF-ERK pathway. Front. Physiol. 10, 388.
|
Porrello, E.R., Mahmoud, A.I., Simpson, E., Hill, J.A., Richardson, J.A., Olson, E.N., Sadek, H.A., 2011. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078-1080.
|
Porrello, E.R., Mahmoud, A.I., Simpson, E., Johnson, B.A., Grinsfelder, D., Canseco, D., Mammen, P.P., Rothermel, B.A., Olson, E.N., Sadek, H.A., 2013. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. U. S. A. 110, 187-192.
|
Rho, H., Terry, A.R., Chronis, C., Hay, N., 2023. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 35, 1406-1423.
|
Roth, G.A., Mensah, G.A., Johnson, C.O., Addolorato, G., Ammirati, E., Baddour, L.M., Barengo, N.C., Beaton, A.Z., Benjamin, E.J., Benziger, C.P., et al., 2020. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982-3021.
|
Singer, D., Muhlfeld, C., 2007. Perinatal adaptation in mammals: the impact of metabolic rate. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 780-784.
|
Takahashi, E., Doi, K., 1998. Impact of diffusional oxygen transport on oxidative metabolism in the heart. Jpn J. Physiol. 48, 243-252.
|
Tzahor, E., Poss, K.D., 2017. Cardiac regeneration strategies: staying young at heart. Science 356, 1035-1039.
|
Uygur, A., Lee, R.T., 2016. Mechanisms of cardiac regeneration. Dev. Cell 36, 362-374.
|
Verdone, L., Caserta, M., Di Mauro, E., 2005. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 83, 344-353.
|
Wan, N., Wang, N., Yu, S., Zhang, H., Tang, S., Wang, D., Lu, W., Li, H., Delafield, D.G., Kong, Y., et al., 2022. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat. Methods 19, 854-864.
|
Wang, N., Wang, W., Wang, X., Mang, G., Chen, J., Yan, X., Tong, Z., Yang, Q., Wang, M., Chen, L., et al., 2022. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ. Res. 131, 893-908.
|
Wu, K., Fan, D., Zhao, H., Liu, Z., Hou, Z., Tao, W., Yu, G., Yuan, S., Zhu, X., Kang, M., et al., 2023. Dynamics of histone acetylation during human early embryogenesis. Cell Discov. 9, 29.
|
Xu, J., Xu, X., Si, L., Xue, L., Zhang, S., Qin, J., Wu, Y., Shao, Y., Chen, Y., Wang, X., 2013. Intracellular lactate signaling cascade in atrial remodeling of mitral valvular patients with atrial fibrillation. J. Cardiothorac. Surg. 8, 34.
|
Yang, Z., Yan, C., Ma, J., Peng, P., Ren, X., Cai, S., Shen, X., Wu, Y., Zhang, S., Wang, X., et al., 2023. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat. Metab. 5, 61-79.
|
Ye, L., Jiang, Y., Zhang, M., 2022. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev. 68, 81-92.
|
Yi, L., Tang, D., Xiang, X., Xiao, C., Tang, H., Huang, H., 2024. New mechanisms: from lactate to lactylation to rescue heart failure. Biosci. Trends. https://doi.org/10.5582/bst.2024.01000.
|
Yucel, N., Wang, Y.X., Mai, T., Porpiglia, E., Lund, P.J., Markov, G., Garcia, B.A., Bendall, S.C., Angelo, M., Blau, H.M., 2019. Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep. 27, 3939-3955.
|
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., et al., 2019. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575-580.
|
Zhang, N., Jiang, N., Yu, L., Guan, T., Sang, X., Feng, Y., Chen, R., Chen, Q., 2021. Protein lactylation critically regulates energy metabolism in the protozoan parasite trypanosoma brucei. Front. Cell Dev. Biol. 9, 719720.
|
Zhang, N., Zhang, Y., Xu, J., Wang, P., Wu, B., Lu, S., Lu, X., You, S., Huang, X., Li, M., et al., 2023. α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 33, 679-698.
|
Zhou, B., Tian, R., 2018. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest. 128, 3716-3726.
|
Zhou, J., Sun, L., Chen, L., Liu, S., Zhong, L., Cui, M., 2019. Comprehensive metabolomic and proteomic analyses reveal candidate biomarkers and related metabolic networks in atrial fibrillation. Metabolomics 15, 96.
|