Ahn, Y.J., Kim, H., Choi, S., Mazo-Molina, C., Prokchorchik, M., Zhang, N., Kim, B., Mang, H., Koehler, N., Kim, J., et al., 2023. Ptr1 and ZAR1 immune receptors confer overlapping and distinct bacterial pathogen effector specificities. New Phytol. 239, 1935-1953.
|
Albert, I., Bohm, H., Albert, M., Feiler, C.E., Imkampe, J., Wallmeroth, N., Brancato, C., Raaymakers, T.M., Oome, S., Zhang, H., et al., 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1, 15140.
|
Axtell, M.J., Staskawicz, B.J., 2003. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377.
|
Barragan, A.C., Weigel, D., 2021. Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell 33, 814-831.
|
Bastedo, D.P., Khan, M., Martel, A., Seto, D., Kireeva, I., Zhang, J., Masud, W., Millar, D., Lee, J.Y., Lee, A.H.-Y., et al., 2019. Perturbations of the ZED1 pseudokinase activate plant immunity. PLoS Pathog. 15, e1007900.
|
Bernoux, M., Zetzsche, H., Stuttmann, J., 2022. Connecting the dots between cell surface- and intracellular-triggered immune pathways in plants. Curr. Opin. Plant Biol. 69, 102276.
|
Biffen, R.H., 1903. Experiments on wheat. Nature. 69, 92-93.
|
Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al., 2021. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528-3541.e12.
|
Bi, G., Zhou, J.-M., 2021. Regulation of cell death and signaling by pore-forming resistosomes. Annu. Rev. Phytopathol. 59, 239-263.
|
Bjornson, M., Pimprikar, P., Nurnberger, T., Zipfel, C., 2021. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nat. Plants 7, 579-586.
|
Bucherl, C.A., Jarsch, I.K., Schudoma, C., Segonzac, C., Mbengue, M., Robatzek, S., MacLean, D., Ott, T., Zipfel, C., 2017. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. Elife 6, e25114.
|
Cao, Y., Ma, J., Han, S., Hou, M., Wei, X., Zhang, X., Zhang, Z.J., Sun, S., Ku, L., Tang, J., et al., 2023. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnol. J. 21, 1839-1859.
|
Chai, J., Song, W., Parker, J.E., 2023. New biochemical principles for NLR immunity in plants. Mol. Plant. Microbe. Interact. 36, 468-475.
|
Chen, J., Li, L., Kim, J.H., Neuhauser, B., Wang, M., Thelen, M., Hilleary, R., Chi, Y., Wei, L., Venkataramani, K., Exposito-Alonso, M., et al., 2023. Small proteins modulate ion-channel-like ACD6 to regulate immunity in Arabidopsis thaliana. Mol. Cell. 23, 4386-4397.
|
Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D.G., Felix, G., Boller, T., 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.
|
Chung, E.-H., El-Kasmi, F., He, Y., Loehr, A., Dangl, J.L., 2014. A plant phosphoswitch platform repeatedly targeted by type III effector proteins regulates the output of both tiers of plant immune receptors. Cell Host Microbe 16, 484-494.
|
Clough, S.J., Fengler, K.A., Yu, I.C., Lippok, B., Smith, R.K., Jr, Bent, A.F., 2000. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. U. S. A. 97, 9323-9328.
|
Contreras, M.P., Ludke, D., Pai, H., Toghani, A., Kamoun, S., 2023. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep. 24, e57495.
|
Costet, L., Cordelier, S., Dorey, S., Baillieul, F., Fritig, B., Kauffmann, S., 1999. Relationship between Localized Acquired Resistance (LAR) and the Hypersensitive Response (HR): HR is necessary for LAR to occur and salicylic acid is not sufficient to trigger LAR. Mol. Plant. Microbe. Interact. 12, 655-662.
|
Cuevas-Velazquez, C.L., Dinneny, J.R., 2018. Organization out of disorder: liquid-liquid phase separation in plants. Curr. Opin. Plant Biol. 45, 68-74.
|
Dangl, J.L., Jones, J.D., 2001. Plant pathogens and integrated defence responses to infection. Nature 411, 826-833.
|
Davenport, R., 2002. Glutamate receptors in plants. Ann. Bot. 90, 549-557.
|
de Bary, A., 1876. Researches into the nature of the potato fungus, Phytophthora infestans. J. Bot. Paris 14, 105-126.
|
Deeks, M.J., Hussey, P.J., 2005. Arp2/3 and SCAR: plants move to the fore. Nat. Rev. Mol. Cell Biol. 6, 954-964.
|
DeFalco, T.A., Zipfel, C., 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81, 3449-3467.
|
Degen, M., Santos, J.C., Pluhackova, K., Cebrero, G., Ramos, S., Jankevicius, G., Hartenian, E., Guillerm, U., Mari, S.A., Kohl, B., et al., 2023. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618, 1065-1071.
|
Delannoy, E., Batardiere, B., Pateyron, S., Soubigou-Taconnat, L., Chiquet, J., Colcombet, J., Lang, J., 2023. Cell specialization and coordination in Arabidopsis leaves upon pathogenic attack revealed by scRNA-seq. Plant Commun. 4, 100676.
|
Dietrich, P., Moeder, W., Yoshioka, K., 2020. Plant cyclic nucleotide-gated channels: new insights on their functions and regulation. Plant Physiol. 184, 27-38.
|
Ding, P., Ding, Y., 2020. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 25, 549-565.
|
Dodds, P.N., Rathjen, J.P., 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539-548.
|
Dorey, S., Baillieul, F., Pierrel, M.-A., Saindrenan, P., Fritig, B., Kauffmann, S., 1997. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant. Microbe. Interact. 10, 646-655.
|
Duxbury, Z., Wu, C.-H., Ding, P., 2021. A comparative overview of the intracellular guardians of plants and animals: NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 72, 155-184.
|
Emonet, A., Zhou, F., Vacheron, J., Heiman, C.M., Denervaud Tendon, V., Ma, K.-W., Schulze-Lefert, P., Keel, C., Geldner, N., 2021. Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria. Curr. Biol. 31, 1012-1028.e7.
|
Feehan, J.M., Wang, J., Sun, X., Choi, J., Ahn, H.-K., Ngou, B.P.M., Parker, J.E., Jones, J.D.G., 2023. Oligomerization of a plant helper NLR requires cell-surface and intracellular immune receptor activation. Proc. Natl. Acad. Sci. U. S. A. 120, e2210406120.
|
Fink, S.L., Cookson, B.T., 2006. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812-1825.
|
Flor, H.H., 1942. The inheritance of pathogenicity in a cross between physiologic races 22 and 24 Melampsora lini. Phytopathology 32, 653-669.
|
Forderer, A., Li, E., Lawson, A.W., Deng, Y.-N., Sun, Y., Logemann, E., Zhang, X., Wen, J., Han, Z., Chang, J., Chen, Y., et al., 2022. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532-539.
|
Fuchs, H., Sacristan, M.D. 1996. Identification of a gene in Arabidopsis thaliana controlling resistance to Clubroot (Plasmodiophora brassicae) and characterization of the resistance response. Mol. Plant. Microbe. Interact. 9, 91.
|
Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., et al., 2021. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 184, 5391-5404.e17.
|
Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M., Fuji, K., Ogasawara, K., Nishimura, M., Hara-Nishimura, I., 2009. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 23, 2496-2506.
|
Hou, C., Tian, W., Kleist, T., He, K., Garcia, V., Bai, F., Hao, Y., Luan, S., Li, L., 2014. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24, 632-635.
|
Hou, S., Liu, D., Huang, S., Luo, D., Liu, Z., Xiang, Q., Wang, P., Mu, R., Han, Z., Chen, S., et al., 2021. The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes. Nat. Commun. 12, 5494.
|
Hou, S., Wang, X., Chen, D., Yang, X., Wang, M., Turra, D., Di Pietro, A., Zhang, W., 2014. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog. 10, e1004331.
|
Huang, S., Jia, A., Ma, S., Sun, Y., Chang, X., Han, Z., Chai, J., 2023. NLR signaling in plants: from resistosomes to second messengers. Trends Biochem. Sci. 48, 776-787.
|
Huang, S., Zhu, S., Kumar, P., MacMicking, J.D., 2021. A phase-separated nuclear GBPL circuit controls immunity in plants. Nature 594, 424-429.
|
Hu, M., Zhou, J.-M., 2022. Research on ADR1s helps understanding the plant immune network. Stress Biol 2, 12.
|
Jacob, P., Hige, J., Dangl, J.L., 2023a. Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants? Nat. Plants 9, 1184-1190.
|
Jacob, P., Hige, J., Song, L., Bayless, A., Russ, D., Bonardi, V., El Kasmi, F., Wunsch, L., Yang, Y., Fitzpatrick, C.R., et al., 2023b. Broader functions of TIR domains in Arabidopsis immunity. Proc. Natl. Acad. Sci. U. S. A. 120, e2220921120.
|
Jacob, P., Kim, N.H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W.G., Furzer, O.J., Lietzan, A.D., Sunil, S., Kempthorn, K., et al., 2021. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420-425.
|
Ji, Z., Guo, W., Chen, X., Wang, C., Zhao, K., 2022. Plant executor genes. Int. J. Mol. Sci. 23. https://doi.org/10.3390/ijms23031524.
|
Jia, M., Chen, X., Shi, X., Fang, Y., Gu, Y., 2023. Nuclear transport receptor KA120 regulates molecular condensation of MAC3 to coordinate plant immune activation. Cell Host Microbe 31, 1685-1699.e7.
|
Jones, J.D.G., Dangl, J.L., 2006. The plant immune system. Nature 444, 323-329.
|
Jones, J.D.G., Vance, R.E., Dangl, J.L., 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395.
|
Jurkowski, G.I., Smith, R.K., Jr, Yu, I.-C., Ham, J.H., Sharma, S.B., Klessig, D.F., Fengler, K.A., Bent, A.F., 2004. Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol. Plant. Microbe. Interact. 17, 511-520.
|
Kayagaki, N., Kornfeld, O.S., Lee, B.L., Stowe, I.B., O’Rourke, K., Li, Q., Sandoval, W., Yan, D., Kang, J., Xu, M., et al., 2021. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131-136.
|
Kayagaki, N., Stowe, I.B., Alegre, K., Deshpande, I., Wu, S., Lin, Z., Kornfeld, O.S., Lee, B.L., Zhang, J., Liu, J., et al., 2023. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072-1077.
|
Kayagaki, N., Stowe, I.B., Lee, B.L., O’Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q.T., et al., 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666-671.
|
Kim, J.H., Castroverde, C.D.M., Huang, S., Li, C., Hilleary, R., Seroka, A., Sohrabi, R., Medina-Yerena, D., Huot, B., Wang, J., et al., 2022. Increasing the resilience of plant immunity to a warming climate. Nature 607, 339-344.
|
Kim, J., Lee, H., Lee, H.G., Seo, P.J., 2021. Get closer and make hotspots: liquid-liquid phase separation in plants. EMBO Rep. 22, e51656.
|
Kolodziej, M.C., Singla, J., Sanchez-Martin, J., Zbinden, H., Simkova, H., Karafiatova, M., Dolezel, J., Gronnier, J., Poretti, M., Glauser, G., et al., 2021. A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nat. Commun. 12, 956.
|
Koster, P., DeFalco, T.A., Zipfel, C., 2022. Ca2+ signals in plant immunity. EMBO J. 41, e110741.
|
Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A., Kamoun, S., 2023. NLR immune receptor-nanobody fusions confer plant disease resistance. Science 379, 934-939.
|
Laflamme, B., Dillon, M.M., Martel, A., Almeida, R.N.D., Desveaux, D., Guttman, D.S., 2020. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 367, 763-768.
|
Lewis, J.D., Lee, A.H.-Y., Hassan, J.A., Wan, J., Hurley, B., Jhingree, J.R., Wang, P.W., Lo, T., Youn, J.-Y., Guttman, D.S., et al., 2013. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc. Natl. Acad. Sci. U. S. A. 110, 18722-18727.
|
Lewis, J.D., Wu, R., Guttman, D.S., Desveaux, D., 2010. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS Genet. 6, e1000894.
|
Li, F., Wang, J., Ma, C., Zhao, Y., Wang, Y., Hasi, A., Qi, Z., 2013. Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis. Plant Physiol. 162, 1497-1509.
|
Li, L., Habring, A., Wang, K., Weigel, D., 2020. Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. Cell Host Microbe 27, 405-417.e6.
|
Lin, X., Jia, Y., Heal, R., Prokchorchik, M., Sindalovskaya, M., Olave-Achury, A., Makechemu, M., Fairhead, S., Noureen, A., Heo, J., et al., 2023. Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat. Genet. 55, 1579-1588.
|
Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., et al., 2022. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
|
Liu, Z., Hou, S., Rodrigues, O., Wang, P., Luo, D., Munemasa, S., Lei, J., Liu, J., Ortiz-Morea, F.A., Wang, X., et al., 2022. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332-339.
|
Lu, H., Rate, D.N., Song, J.T., Greenberg, J.T., 2003. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15, 2408-2420.
|
Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., Dangl, J.L., 2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389.
|
Mackey, D., Holt, B.F., 3rd, Wiig, A., Dangl, J.L., 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754.
|
Mahdi, L.K., Huang, M., Zhang, X., Nakano, R.T., Kopp, L.B., Saur, I.M.L., Jacob, F., Kovacova, V., Lapin, D., Parker, J.E., et al., 2020. Discovery of a family of mixed lineage kinase domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe 28, 813-824.e6.
|
Maruta, N., Sorbello, M., Lim, B.Y.J., McGuinness, H.Y., Shi, Y., Ve, T., Kobe, B., 2023. TIR domain-associated nucleotides with functions in plant immunity and beyond. Curr. Opin. Plant Biol. 73, 102364.
|
Ma, W., Smigel, A., Tsai, Y.-C., Braam, J., Berkowitz, G.A., 2008. Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol. 148, 818-828.
|
Ma, Z., Sun, Y., Zhu, X., Yang, L., Chen, X., Miao, Y., 2022. Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. Plant Cell 34, 374-394.
|
Miao, Y., Guo, X., Zhu, K., Zhao, W., 2023. Biomolecular condensates tunes immune signaling at the Host-Pathogen interface. Curr. Opin. Plant Biol. 74, 102374.
|
Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., Ausubel, F.M., 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22, 973-990.
|
Monaghan, J., Xu, F., Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y., Li, X., 2009. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog. 5, e1000526.
|
Mousavi, S.A.R., Chauvin, A., Pascaud, F., Kellenberger, S., Farmer, E.E., 2013. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500, 422-426.
|
Mucyn, T.S., Clemente, A., Andriotis, V.M.E., Balmuth, A.L., Oldroyd, G.E.D., Staskawicz, B.J., Rathjen, J.P., 2006. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18, 2792-2806.
|
Ngou, B.P.M., Ahn, H.-K., Ding, P., Jones, J.D.G., 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110-115.
|
Ngou, B.P.M., Ding, P., Jones, J.D.G., 2022a. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell 34, 1447-1478.
|
Ngou, B.P.M., Heal, R., Wyler, M., Schmid, M.W., Jones, J.D.G., 2022b. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nat. Plants 8, 1146-1152.
|
Nobori, T., Monell, A., Lee, T.A., Zhou, J., Nery, J., Ecker, J.R., 2023. Time-resolved single-cell and spatial gene regulatory atlas of plants under pathogen attack. bioRxiv. https://doi.org/10.1101/2023.04.10.536170.
|
Ntoukakis, V., Saur, I.M.L., Conlan, B., Rathjen, J.P., 2014. The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Curr. Opin. Plant Biol. 20, 69-74.
|
Peng, Y., van Wersch, R., Zhang, Y., 2018. Convergent and divergent signaling in PAMP-triggered immunity and Effector-triggered immunity. Mol. Plant. Microbe. Interact. 31, 403-409.
|
Perraki, A., Gronnier, J., Gouguet, P., Boudsocq, M., Deroubaix, A.-F., Simon, V., German-Retana, S., Legrand, A., Habenstein, B., Zipfel, C., et al., 2018. REM1.3’s phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement. PLoS Pathog. 14, e1007378.
|
Pruitt, R.N., Locci, F., Wanke, F., Zhang, L., Saile, S.C., Joe, A., Karelina, D., Hua, C., Frohlich, K., Wan, W.-L., et al., 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495-499.
|
Rate, D.N., Cuenca, J.V., Bowman, G.R., Guttman, D.S., Greenberg, J.T., 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11, 1695-1708.
|
Rhodes, J., Yang, H., Moussu, S., Boutrot, F., Santiago, J., Zipfel, C., 2021. Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nat. Commun. 12, 705.
|
Ross, A.F., 1961. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14, 329-339.
|
Ruan, J., Xia, S., Liu, X., Lieberman, J., Wu, H., 2018. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62-67.
|
Rufian, J.S., Macho, A.P., Corry, D.S., Mansfield, J.W., Ruiz-Albert, J., Arnold, D.L., Beuzon, C.R., 2018. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. Mol. Plant Pathol. 19, 537-551.
|
Rzemieniewski, J., Stegmann, M., 2022. Regulation of pattern-triggered immunity and growth by phytocytokines. Curr. Opin. Plant Biol. 68, 102230.
|
Seto, D., Koulena, N., Lo, T., Menna, A., Guttman, D.S., Desveaux, D., 2017. Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases. Nat Plants 3, 17027.
|
Sha, G., Sun, P., Kong, X., Han, X., Sun, Q., Fouillen, L., Zhao, J., Li, Y., Yang, L., Wang, Y., et al., 2023. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature 618, 1017-1023.
|
Shao, Q., Gao, Q., Lhamo, D., Zhang, H., Luan, S., 2020. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Sci. Signal. 13, aba1453.
|
Shao, Z.-Q., Xue, J.-Y., Wang, Q., Wang, B., Chen, J.-Q., 2019. Revisiting the Origin of Plant NBS-LRR Genes. Trends Plant Sci. 24, 9-12.
|
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., Shao, F., 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660-665.
|
Spoel, S.H., Dong, X., 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12, 89-100.
|
Su, L., Quade, B., Wang, H., Sun, L., Wang, X., Rizo, J., 2014. A plug release mechanism for membrane permeation by MLKL. Structure 22, 1489-1500.
|
Sun, H., Zhu, X., Li, C., Ma, Z., Han, X., Luo, Y., Yang, L., Yu, J., Miao, Y., 2021. Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat. Commun. 12, 4064.
|
Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X., et al., 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227.
|
Sun, Y., Li, L., Macho, A.P., Han, Z., Hu, Z., Zipfel, C., Zhou, J.-M., Chai, J., 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624-628.
|
Tang, B., Feng, L., Hulin, M.T., Ding, P., Ma, W., 2023. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics. Cell Host Microbe 31, 1732-1747.e5.
|
Thomma, B.P.H.J., Nurnberger, T., Joosten, M.H.A.J., 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4-15.
|
Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., Leitao, N., DeFalco, T.A., et al., 2020. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585, 569-573.
|
Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., Sun, T., Xu, F., Zhang, Y., Wang, S., et al., 2021. Activation of TIR signaling boosts pattern-triggered immunity. Nature 598, 500-503.
|
Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., Hu, S., Zhang, L., Niu, Q., Li, L., et al., 2019. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131-135.
|
Torres Ascurra, Y.C., Zhang, L., Toghani, A., Hua, C., Rangegowda, N.J., Posbeyikian, A., Pai, H., Lin, X., Wolters, P.J., Wouters, D., et al., 2023. Functional diversification of a wild potato immune receptor at its center of origin. Science 381, 891-897.
|
Tsai, H.-H., Wang, J., Geldner, N., Zhou, F., 2023. Spatiotemporal control of root immune responses during microbial colonization. Curr. Opin. Plant Biol. 74, 102369.
|
Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., Katagiri, F., 2009. Network properties of robust immunity in plants. PLoS Genet. 5, e1000772.
|
Urquhart, W., Gunawardena, A.H.L.A.N., Moeder, W., Ali, R., Berkowitz, G.A., Yoshioka, K., 2007. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol. Biol. 65, 747-761.
|
van der Hoorn, R.A.L., Kamoun, S., 2008. From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009-2017.
|
van Wersch, S., Tian, L., Hoy, R., Li, X., 2020. Plant NLRs: The whistleblowers of plant immunity. Plant Commun. 1, 100016.
|
Wang, G., Roux, B., Feng, F., Guy, E., Li, L., Li, N., Zhang, X., Lautier, M., Jardinaud, M.-F., Chabannes, M., et al., 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295.
|
Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.-W., Zhou, J.-M., Chai, J., 2019a. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870.
|
Wang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., Han, Z., Qi, Y., Gao, N., Wang, H.-W., et al., 2019b. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868.
|
Wang, N., Tang, C., Fan, X., He, M., Gan, P., Zhang, S., Hu, Z., Wang, X., Yan, T., Shu, W., et al., 2022. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 185, 2961-2974.e19.
|
Wang, W., Qin, L., Zhang, W., Tang, L., Zhang, C., Dong, X., Miao, P., Shen, M., Du, H., Cheng, H., et al., 2023. WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 186, 2656-2671.e18.
|
Wang, Y., Pruitt, R.N., Nurnberger, T., Wang, Y., 2022. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 20, 449-464.
|
Wang, Z., Liu, X., Yu, J., Yin, S., Cai, W., Kim, N.H., El Kasmi, F., Dangl, J.L., Wan, L., 2023. Plasma membrane association and resistosome formation of plant helper immune receptors. Proc. Natl. Acad. Sci. U. S. A. 120, e2222036120.
|
Xing, W., Zou, Y., Liu, Q., Liu, J., Luo, X., Huang, Q., Chen, S., Zhu, L., Bi, R., Hao, Q., et al., 2007. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449, 243-247.
|
Xue, N., Zhan, C., Song, J., Li, Y., Zhang, J., Qi, J., Wu, J., 2022. The glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect herbivores in Arabidopsis. J. Exp. Bot. 73, 7611-7627.
|
Xu, G., Moeder, W., Yoshioka, K., Shan, L., 2022. A tale of many families: calcium channels in plant immunity. Plant Cell 34, 1551-1567.
|
Yamaguchi, Y., Pearce, G., Ryan, C.A., 2006. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl. Acad. Sci. U. S. A. 103, 10104-10109.
|
Yang, H., Kim, X., Sklenar, J., Aubourg, S., Sancho-Andres, G., Stahl, E., Guillou, M.-C., Gigli-Bisceglia, N., Tran Van Canh, L., Bender, K.W., Stintzi, A., et al., 2023. Subtilase-mediated biogenesis of the expanded family of SERINE RICH ENDOGENOUS PEPTIDES. Nat. Plants 1-10.
|
Yoshioka, K., Moeder, W., Kang, H.-G., Kachroo, P., Masmoudi, K., Berkowitz, G., Klessig, D.F., 2006. The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell 18, 747-763.
|
Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., et al., 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367-371.
|
Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.-M., He, S.Y., Xin, X.-F., 2021a. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105-109.
|
Yuan, M., Ngou, B.P.M., Ding, P., Xin, X.-F., 2021b. PTI-ETI crosstalk: an integrative view of plant immunity. Curr. Opin. Plant Biol. 62, 102030.
|
Yuan, P., Jauregui, E., Du, L., Tanaka, K., Poovaiah, B.W., 2017. Calcium signatures and signaling events orchestrate plant-microbe interactions. Curr. Opin. Plant Biol. 38, 173-183.
|
Yu, X., Xu, G., Li, B., de Souza Vespoli, L., Liu, H., Moeder, W., Chen, S., de Oliveira, M.V.V., Ariadina de Souza, S., Shao, W., et al., 2019. The receptor kinases BAK1/SERK4 regulate Ca2+ channel-mediated cellular homeostasis for cell death containment. Curr. Biol. 29, 3778-3790.e8.
|
Zavaliev, R., Mohan, R., Chen, T., Dong, X., 2020. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182, 1093-1108.e18.
|
Zdrzalek, R., Stone, C., De la Concepcion, J.C., Banfield, M.J., Bentham, A.R., 2023. Pathways to engineering plant intracellular NLR immune receptors. Curr. Opin. Plant Biol. 74, 102380.
|
Zhang, L., Hua, C., Janocha, D., Fliegmann, J., Nurnberger, T., 2023. Plant cell surface immune receptors-Novel insights into function and evolution. Curr. Opin. Plant Biol. 74, 102384.
|
Zhang, W., Fraiture, M., Kolb, D., Loffelhardt, B., Desaki, Y., Boutrot, F.F.G., Tor, M., Zipfel, C., Gust, A.A., Brunner, F., 2013. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25, 4227-4241.
|
Zhang, Y., Chen, X., Gueydan, C., Han, J., 2018. Plasma membrane changes during programmed cell deaths. Cell Res. 28, 9-21.
|
Zhang, L., Kars, I., Essenstam, B., Liebrand, T.W.H., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., van den Ackerveken, G., van Kan, J.A.L., 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164, 352-364.
|
Zhang, Y., Li, X., 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 50, 29-36.
|
Zhang, Z., Shrestha, J., Tateda, C., Greenberg, J.T., 2014. Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein ACCELERATED CELL DEATH6. Mol. Plant 7, 1365-1383.
|
Zhao, C., Tang, Y., Wang, J., Zeng, Y., Sun, H., Zheng, Z., Su, R., Schneeberger, K., Parker, J.E., Cui, H., 2021. A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytol. 230, 1078-1094.
|
Zhao, Y.-B., Liu, M.-X., Chen, T.-T., Ma, X., Li, Z.-K., Zheng, Z., Zheng, S.-R., Chen, L., Li, Y.-Z., Tang, L.-R., et al., 2022. Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Sci. Adv. 8, eabq5108.
|
Zhao, Y., Zhu, X., Chen, X., Zhou, J.-M., 2022. From plant immunity to crop disease resistance. J. Genet. Genomics 49, 693-703.
|
Zheng, X., Zhou, Z., Gong, Z., Hu, M., Ahn, Y.J., Zhang, X., Zhao, Y., Gong, G., Zhang, J., Zuo, J., et al., 2022. Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. J. Genet. Genomics 49, 823-832.
|
Zhou, F., Emonet, A., Denervaud Tendon, V., Marhavy, P., Wu, D., Lahaye, T., Geldner, N., 2020. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180, 440-453.e18.
|
Zhou, J.-M., Chai, J., 2008. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 11, 179-185.
|
Zhou, Y., Niu, R., Tang, Z., Mou, R., Wang, Z., Zhu, S., Yang, H., Ding, P., Xu, G., 2023. Plant HEM1 specifies a condensation domain to control immune gene translation. Nat. Plants 9, 289-301.
|
Zhu, J., Lolle, S., Tang, A., Guel, B., Kvitko, B., Cole, B., Coaker, G., 2023a. Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep. 42, 112676.
|
Zhu, J., Moreno-Perez, A., Coaker, G., 2023b. Understanding plant pathogen interactions using spatial and single-cell technologies. Commun. Biol. 6, 814.
|
Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., Felix, G., 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760.
|