8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 7
Jul.  2024
Turn off MathJax
Article Contents

From molecule to cell: the expanding frontiers of plant immunity

doi: 10.1016/j.jgg.2024.02.005
Funds:

This work was supported by grants from the CAS Projects for Young Scientist in Basic Research (YSBR-080 to L.L) and the National Natural Science Foundation of China (32270298 to L.L).

  • Received Date: 2023-12-25
  • Accepted Date: 2024-02-21
  • Rev Recd Date: 2024-02-20
  • Available Online: 2025-06-06
  • Publish Date: 2024-02-26
  • In recent years, the field of plant immunity has witnessed remarkable breakthroughs. During the co-evolution between plants and pathogens, plants have developed a wealth of intricate defense mechanisms to safeguard their survival. Newly identified immune receptors have added unexpected complexity to the surface and intracellular sensor networks, enriching our understanding of the ongoing plant-pathogen interplay. Deciphering the molecular mechanisms of resistosome shapes our understanding of these mysterious molecules in plant immunity. Moreover, technological innovations are expanding the horizon of the plant-pathogen battlefield into spatial and temporal scales. While the development provides new opportunities for untangling the complex realm of plant immunity, challenges remain in uncovering plant immunity across spatiotemporal dimensions from both molecular and cellular levels.
  • loading
  • Ahn, Y.J., Kim, H., Choi, S., Mazo-Molina, C., Prokchorchik, M., Zhang, N., Kim, B., Mang, H., Koehler, N., Kim, J., et al., 2023. Ptr1 and ZAR1 immune receptors confer overlapping and distinct bacterial pathogen effector specificities. New Phytol. 239, 1935-1953.
    Albert, I., Bohm, H., Albert, M., Feiler, C.E., Imkampe, J., Wallmeroth, N., Brancato, C., Raaymakers, T.M., Oome, S., Zhang, H., et al., 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1, 15140.
    Axtell, M.J., Staskawicz, B.J., 2003. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377.
    Barragan, A.C., Weigel, D., 2021. Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell 33, 814-831.
    Bastedo, D.P., Khan, M., Martel, A., Seto, D., Kireeva, I., Zhang, J., Masud, W., Millar, D., Lee, J.Y., Lee, A.H.-Y., et al., 2019. Perturbations of the ZED1 pseudokinase activate plant immunity. PLoS Pathog. 15, e1007900.
    Bernoux, M., Zetzsche, H., Stuttmann, J., 2022. Connecting the dots between cell surface- and intracellular-triggered immune pathways in plants. Curr. Opin. Plant Biol. 69, 102276.
    Biffen, R.H., 1903. Experiments on wheat. Nature. 69, 92-93.
    Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al., 2021. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528-3541.e12.
    Bi, G., Zhou, J.-M., 2021. Regulation of cell death and signaling by pore-forming resistosomes. Annu. Rev. Phytopathol. 59, 239-263.
    Bjornson, M., Pimprikar, P., Nurnberger, T., Zipfel, C., 2021. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity. Nat. Plants 7, 579-586.
    Bucherl, C.A., Jarsch, I.K., Schudoma, C., Segonzac, C., Mbengue, M., Robatzek, S., MacLean, D., Ott, T., Zipfel, C., 2017. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. Elife 6, e25114.
    Cao, Y., Ma, J., Han, S., Hou, M., Wei, X., Zhang, X., Zhang, Z.J., Sun, S., Ku, L., Tang, J., et al., 2023. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots. Plant Biotechnol. J. 21, 1839-1859.
    Chai, J., Song, W., Parker, J.E., 2023. New biochemical principles for NLR immunity in plants. Mol. Plant. Microbe. Interact. 36, 468-475.
    Chen, J., Li, L., Kim, J.H., Neuhauser, B., Wang, M., Thelen, M., Hilleary, R., Chi, Y., Wei, L., Venkataramani, K., Exposito-Alonso, M., et al., 2023. Small proteins modulate ion-channel-like ACD6 to regulate immunity in Arabidopsis thaliana. Mol. Cell. 23, 4386-4397.
    Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D.G., Felix, G., Boller, T., 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.
    Chung, E.-H., El-Kasmi, F., He, Y., Loehr, A., Dangl, J.L., 2014. A plant phosphoswitch platform repeatedly targeted by type III effector proteins regulates the output of both tiers of plant immune receptors. Cell Host Microbe 16, 484-494.
    Clough, S.J., Fengler, K.A., Yu, I.C., Lippok, B., Smith, R.K., Jr, Bent, A.F., 2000. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. U. S. A. 97, 9323-9328.
    Contreras, M.P., Ludke, D., Pai, H., Toghani, A., Kamoun, S., 2023. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep. 24, e57495.
    Costet, L., Cordelier, S., Dorey, S., Baillieul, F., Fritig, B., Kauffmann, S., 1999. Relationship between Localized Acquired Resistance (LAR) and the Hypersensitive Response (HR): HR is necessary for LAR to occur and salicylic acid is not sufficient to trigger LAR. Mol. Plant. Microbe. Interact. 12, 655-662.
    Cuevas-Velazquez, C.L., Dinneny, J.R., 2018. Organization out of disorder: liquid-liquid phase separation in plants. Curr. Opin. Plant Biol. 45, 68-74.
    Dangl, J.L., Jones, J.D., 2001. Plant pathogens and integrated defence responses to infection. Nature 411, 826-833.
    Davenport, R., 2002. Glutamate receptors in plants. Ann. Bot. 90, 549-557.
    de Bary, A., 1876. Researches into the nature of the potato fungus, Phytophthora infestans. J. Bot. Paris 14, 105-126.
    Deeks, M.J., Hussey, P.J., 2005. Arp2/3 and SCAR: plants move to the fore. Nat. Rev. Mol. Cell Biol. 6, 954-964.
    DeFalco, T.A., Zipfel, C., 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81, 3449-3467.
    Degen, M., Santos, J.C., Pluhackova, K., Cebrero, G., Ramos, S., Jankevicius, G., Hartenian, E., Guillerm, U., Mari, S.A., Kohl, B., et al., 2023. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618, 1065-1071.
    Delannoy, E., Batardiere, B., Pateyron, S., Soubigou-Taconnat, L., Chiquet, J., Colcombet, J., Lang, J., 2023. Cell specialization and coordination in Arabidopsis leaves upon pathogenic attack revealed by scRNA-seq. Plant Commun. 4, 100676.
    Dietrich, P., Moeder, W., Yoshioka, K., 2020. Plant cyclic nucleotide-gated channels: new insights on their functions and regulation. Plant Physiol. 184, 27-38.
    Ding, P., Ding, Y., 2020. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 25, 549-565.
    Dodds, P.N., Rathjen, J.P., 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539-548.
    Dorey, S., Baillieul, F., Pierrel, M.-A., Saindrenan, P., Fritig, B., Kauffmann, S., 1997. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Mol. Plant. Microbe. Interact. 10, 646-655.
    Duxbury, Z., Wu, C.-H., Ding, P., 2021. A comparative overview of the intracellular guardians of plants and animals: NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 72, 155-184.
    Emonet, A., Zhou, F., Vacheron, J., Heiman, C.M., Denervaud Tendon, V., Ma, K.-W., Schulze-Lefert, P., Keel, C., Geldner, N., 2021. Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria. Curr. Biol. 31, 1012-1028.e7.
    Feehan, J.M., Wang, J., Sun, X., Choi, J., Ahn, H.-K., Ngou, B.P.M., Parker, J.E., Jones, J.D.G., 2023. Oligomerization of a plant helper NLR requires cell-surface and intracellular immune receptor activation. Proc. Natl. Acad. Sci. U. S. A. 120, e2210406120.
    Fink, S.L., Cookson, B.T., 2006. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8, 1812-1825.
    Flor, H.H., 1942. The inheritance of pathogenicity in a cross between physiologic races 22 and 24 Melampsora lini. Phytopathology 32, 653-669.
    Forderer, A., Li, E., Lawson, A.W., Deng, Y.-N., Sun, Y., Logemann, E., Zhang, X., Wen, J., Han, Z., Chang, J., Chen, Y., et al., 2022. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532-539.
    Fuchs, H., Sacristan, M.D. 1996. Identification of a gene in Arabidopsis thaliana controlling resistance to Clubroot (Plasmodiophora brassicae) and characterization of the resistance response. Mol. Plant. Microbe. Interact. 9, 91.
    Gao, M., He, Y., Yin, X., Zhong, X., Yan, B., Wu, Y., Chen, J., Li, X., Zhai, K., Huang, Y., et al., 2021. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector. Cell 184, 5391-5404.e17.
    Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M., Fuji, K., Ogasawara, K., Nishimura, M., Hara-Nishimura, I., 2009. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 23, 2496-2506.
    Hou, C., Tian, W., Kleist, T., He, K., Garcia, V., Bai, F., Hao, Y., Luan, S., Li, L., 2014. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24, 632-635.
    Hou, S., Liu, D., Huang, S., Luo, D., Liu, Z., Xiang, Q., Wang, P., Mu, R., Han, Z., Chen, S., et al., 2021. The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes. Nat. Commun. 12, 5494.
    Hou, S., Wang, X., Chen, D., Yang, X., Wang, M., Turra, D., Di Pietro, A., Zhang, W., 2014. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog. 10, e1004331.
    Huang, S., Jia, A., Ma, S., Sun, Y., Chang, X., Han, Z., Chai, J., 2023. NLR signaling in plants: from resistosomes to second messengers. Trends Biochem. Sci. 48, 776-787.
    Huang, S., Zhu, S., Kumar, P., MacMicking, J.D., 2021. A phase-separated nuclear GBPL circuit controls immunity in plants. Nature 594, 424-429.
    Hu, M., Zhou, J.-M., 2022. Research on ADR1s helps understanding the plant immune network. Stress Biol 2, 12.
    Jacob, P., Hige, J., Dangl, J.L., 2023a. Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants? Nat. Plants 9, 1184-1190.
    Jacob, P., Hige, J., Song, L., Bayless, A., Russ, D., Bonardi, V., El Kasmi, F., Wunsch, L., Yang, Y., Fitzpatrick, C.R., et al., 2023b. Broader functions of TIR domains in Arabidopsis immunity. Proc. Natl. Acad. Sci. U. S. A. 120, e2220921120.
    Jacob, P., Kim, N.H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W.G., Furzer, O.J., Lietzan, A.D., Sunil, S., Kempthorn, K., et al., 2021. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420-425.
    Ji, Z., Guo, W., Chen, X., Wang, C., Zhao, K., 2022. Plant executor genes. Int. J. Mol. Sci. 23. https://doi.org/10.3390/ijms23031524.
    Jia, M., Chen, X., Shi, X., Fang, Y., Gu, Y., 2023. Nuclear transport receptor KA120 regulates molecular condensation of MAC3 to coordinate plant immune activation. Cell Host Microbe 31, 1685-1699.e7.
    Jones, J.D.G., Dangl, J.L., 2006. The plant immune system. Nature 444, 323-329.
    Jones, J.D.G., Vance, R.E., Dangl, J.L., 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395.
    Jurkowski, G.I., Smith, R.K., Jr, Yu, I.-C., Ham, J.H., Sharma, S.B., Klessig, D.F., Fengler, K.A., Bent, A.F., 2004. Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol. Plant. Microbe. Interact. 17, 511-520.
    Kayagaki, N., Kornfeld, O.S., Lee, B.L., Stowe, I.B., O’Rourke, K., Li, Q., Sandoval, W., Yan, D., Kang, J., Xu, M., et al., 2021. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131-136.
    Kayagaki, N., Stowe, I.B., Alegre, K., Deshpande, I., Wu, S., Lin, Z., Kornfeld, O.S., Lee, B.L., Zhang, J., Liu, J., et al., 2023. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury. Nature 618, 1072-1077.
    Kayagaki, N., Stowe, I.B., Lee, B.L., O’Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q.T., et al., 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666-671.
    Kim, J.H., Castroverde, C.D.M., Huang, S., Li, C., Hilleary, R., Seroka, A., Sohrabi, R., Medina-Yerena, D., Huot, B., Wang, J., et al., 2022. Increasing the resilience of plant immunity to a warming climate. Nature 607, 339-344.
    Kim, J., Lee, H., Lee, H.G., Seo, P.J., 2021. Get closer and make hotspots: liquid-liquid phase separation in plants. EMBO Rep. 22, e51656.
    Kolodziej, M.C., Singla, J., Sanchez-Martin, J., Zbinden, H., Simkova, H., Karafiatova, M., Dolezel, J., Gronnier, J., Poretti, M., Glauser, G., et al., 2021. A membrane-bound ankyrin repeat protein confers race-specific leaf rust disease resistance in wheat. Nat. Commun. 12, 956.
    Koster, P., DeFalco, T.A., Zipfel, C., 2022. Ca2+ signals in plant immunity. EMBO J. 41, e110741.
    Kourelis, J., Marchal, C., Posbeyikian, A., Harant, A., Kamoun, S., 2023. NLR immune receptor-nanobody fusions confer plant disease resistance. Science 379, 934-939.
    Laflamme, B., Dillon, M.M., Martel, A., Almeida, R.N.D., Desveaux, D., Guttman, D.S., 2020. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 367, 763-768.
    Lewis, J.D., Lee, A.H.-Y., Hassan, J.A., Wan, J., Hurley, B., Jhingree, J.R., Wang, P.W., Lo, T., Youn, J.-Y., Guttman, D.S., et al., 2013. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc. Natl. Acad. Sci. U. S. A. 110, 18722-18727.
    Lewis, J.D., Wu, R., Guttman, D.S., Desveaux, D., 2010. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS Genet. 6, e1000894.
    Li, F., Wang, J., Ma, C., Zhao, Y., Wang, Y., Hasi, A., Qi, Z., 2013. Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis. Plant Physiol. 162, 1497-1509.
    Li, L., Habring, A., Wang, K., Weigel, D., 2020. Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. Cell Host Microbe 27, 405-417.e6.
    Lin, X., Jia, Y., Heal, R., Prokchorchik, M., Sindalovskaya, M., Olave-Achury, A., Makechemu, M., Fairhead, S., Noureen, A., Heo, J., et al., 2023. Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat. Genet. 55, 1579-1588.
    Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., et al., 2022. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
    Liu, Z., Hou, S., Rodrigues, O., Wang, P., Luo, D., Munemasa, S., Lei, J., Liu, J., Ortiz-Morea, F.A., Wang, X., et al., 2022. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332-339.
    Lu, H., Rate, D.N., Song, J.T., Greenberg, J.T., 2003. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15, 2408-2420.
    Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., Dangl, J.L., 2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389.
    Mackey, D., Holt, B.F., 3rd, Wiig, A., Dangl, J.L., 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754.
    Mahdi, L.K., Huang, M., Zhang, X., Nakano, R.T., Kopp, L.B., Saur, I.M.L., Jacob, F., Kovacova, V., Lapin, D., Parker, J.E., et al., 2020. Discovery of a family of mixed lineage kinase domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe 28, 813-824.e6.
    Maruta, N., Sorbello, M., Lim, B.Y.J., McGuinness, H.Y., Shi, Y., Ve, T., Kobe, B., 2023. TIR domain-associated nucleotides with functions in plant immunity and beyond. Curr. Opin. Plant Biol. 73, 102364.
    Ma, W., Smigel, A., Tsai, Y.-C., Braam, J., Berkowitz, G.A., 2008. Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol. 148, 818-828.
    Ma, Z., Sun, Y., Zhu, X., Yang, L., Chen, X., Miao, Y., 2022. Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. Plant Cell 34, 374-394.
    Miao, Y., Guo, X., Zhu, K., Zhao, W., 2023. Biomolecular condensates tunes immune signaling at the Host-Pathogen interface. Curr. Opin. Plant Biol. 74, 102374.
    Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., Ausubel, F.M., 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22, 973-990.
    Monaghan, J., Xu, F., Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y., Li, X., 2009. Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog. 5, e1000526.
    Mousavi, S.A.R., Chauvin, A., Pascaud, F., Kellenberger, S., Farmer, E.E., 2013. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500, 422-426.
    Mucyn, T.S., Clemente, A., Andriotis, V.M.E., Balmuth, A.L., Oldroyd, G.E.D., Staskawicz, B.J., Rathjen, J.P., 2006. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18, 2792-2806.
    Ngou, B.P.M., Ahn, H.-K., Ding, P., Jones, J.D.G., 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110-115.
    Ngou, B.P.M., Ding, P., Jones, J.D.G., 2022a. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell 34, 1447-1478.
    Ngou, B.P.M., Heal, R., Wyler, M., Schmid, M.W., Jones, J.D.G., 2022b. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nat. Plants 8, 1146-1152.
    Nobori, T., Monell, A., Lee, T.A., Zhou, J., Nery, J., Ecker, J.R., 2023. Time-resolved single-cell and spatial gene regulatory atlas of plants under pathogen attack. bioRxiv. https://doi.org/10.1101/2023.04.10.536170.
    Ntoukakis, V., Saur, I.M.L., Conlan, B., Rathjen, J.P., 2014. The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Curr. Opin. Plant Biol. 20, 69-74.
    Peng, Y., van Wersch, R., Zhang, Y., 2018. Convergent and divergent signaling in PAMP-triggered immunity and Effector-triggered immunity. Mol. Plant. Microbe. Interact. 31, 403-409.
    Perraki, A., Gronnier, J., Gouguet, P., Boudsocq, M., Deroubaix, A.-F., Simon, V., German-Retana, S., Legrand, A., Habenstein, B., Zipfel, C., et al., 2018. REM1.3’s phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement. PLoS Pathog. 14, e1007378.
    Pruitt, R.N., Locci, F., Wanke, F., Zhang, L., Saile, S.C., Joe, A., Karelina, D., Hua, C., Frohlich, K., Wan, W.-L., et al., 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495-499.
    Rate, D.N., Cuenca, J.V., Bowman, G.R., Guttman, D.S., Greenberg, J.T., 1999. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell 11, 1695-1708.
    Rhodes, J., Yang, H., Moussu, S., Boutrot, F., Santiago, J., Zipfel, C., 2021. Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nat. Commun. 12, 705.
    Ross, A.F., 1961. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14, 329-339.
    Ruan, J., Xia, S., Liu, X., Lieberman, J., Wu, H., 2018. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62-67.
    Rufian, J.S., Macho, A.P., Corry, D.S., Mansfield, J.W., Ruiz-Albert, J., Arnold, D.L., Beuzon, C.R., 2018. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains. Mol. Plant Pathol. 19, 537-551.
    Rzemieniewski, J., Stegmann, M., 2022. Regulation of pattern-triggered immunity and growth by phytocytokines. Curr. Opin. Plant Biol. 68, 102230.
    Seto, D., Koulena, N., Lo, T., Menna, A., Guttman, D.S., Desveaux, D., 2017. Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases. Nat Plants 3, 17027.
    Sha, G., Sun, P., Kong, X., Han, X., Sun, Q., Fouillen, L., Zhao, J., Li, Y., Yang, L., Wang, Y., et al., 2023. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance. Nature 618, 1017-1023.
    Shao, Q., Gao, Q., Lhamo, D., Zhang, H., Luan, S., 2020. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis. Sci. Signal. 13, aba1453.
    Shao, Z.-Q., Xue, J.-Y., Wang, Q., Wang, B., Chen, J.-Q., 2019. Revisiting the Origin of Plant NBS-LRR Genes. Trends Plant Sci. 24, 9-12.
    Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., Shao, F., 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660-665.
    Spoel, S.H., Dong, X., 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12, 89-100.
    Su, L., Quade, B., Wang, H., Sun, L., Wang, X., Rizo, J., 2014. A plug release mechanism for membrane permeation by MLKL. Structure 22, 1489-1500.
    Sun, H., Zhu, X., Li, C., Ma, Z., Han, X., Luo, Y., Yang, L., Yu, J., Miao, Y., 2021. Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat. Commun. 12, 4064.
    Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X., et al., 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227.
    Sun, Y., Li, L., Macho, A.P., Han, Z., Hu, Z., Zipfel, C., Zhou, J.-M., Chai, J., 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624-628.
    Tang, B., Feng, L., Hulin, M.T., Ding, P., Ma, W., 2023. Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics. Cell Host Microbe 31, 1732-1747.e5.
    Thomma, B.P.H.J., Nurnberger, T., Joosten, M.H.A.J., 2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4-15.
    Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., Leitao, N., DeFalco, T.A., et al., 2020. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585, 569-573.
    Tian, H., Wu, Z., Chen, S., Ao, K., Huang, W., Yaghmaiean, H., Sun, T., Xu, F., Zhang, Y., Wang, S., et al., 2021. Activation of TIR signaling boosts pattern-triggered immunity. Nature 598, 500-503.
    Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., Hu, S., Zhang, L., Niu, Q., Li, L., et al., 2019. A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131-135.
    Torres Ascurra, Y.C., Zhang, L., Toghani, A., Hua, C., Rangegowda, N.J., Posbeyikian, A., Pai, H., Lin, X., Wolters, P.J., Wouters, D., et al., 2023. Functional diversification of a wild potato immune receptor at its center of origin. Science 381, 891-897.
    Tsai, H.-H., Wang, J., Geldner, N., Zhou, F., 2023. Spatiotemporal control of root immune responses during microbial colonization. Curr. Opin. Plant Biol. 74, 102369.
    Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., Katagiri, F., 2009. Network properties of robust immunity in plants. PLoS Genet. 5, e1000772.
    Urquhart, W., Gunawardena, A.H.L.A.N., Moeder, W., Ali, R., Berkowitz, G.A., Yoshioka, K., 2007. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol. Biol. 65, 747-761.
    van der Hoorn, R.A.L., Kamoun, S., 2008. From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009-2017.
    van Wersch, S., Tian, L., Hoy, R., Li, X., 2020. Plant NLRs: The whistleblowers of plant immunity. Plant Commun. 1, 100016.
    Wang, G., Roux, B., Feng, F., Guy, E., Li, L., Li, N., Zhang, X., Lautier, M., Jardinaud, M.-F., Chabannes, M., et al., 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295.
    Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H.-W., Zhou, J.-M., Chai, J., 2019a. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870.
    Wang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., Han, Z., Qi, Y., Gao, N., Wang, H.-W., et al., 2019b. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868.
    Wang, N., Tang, C., Fan, X., He, M., Gan, P., Zhang, S., Hu, Z., Wang, X., Yan, T., Shu, W., et al., 2022. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 185, 2961-2974.e19.
    Wang, W., Qin, L., Zhang, W., Tang, L., Zhang, C., Dong, X., Miao, P., Shen, M., Du, H., Cheng, H., et al., 2023. WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 186, 2656-2671.e18.
    Wang, Y., Pruitt, R.N., Nurnberger, T., Wang, Y., 2022. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 20, 449-464.
    Wang, Z., Liu, X., Yu, J., Yin, S., Cai, W., Kim, N.H., El Kasmi, F., Dangl, J.L., Wan, L., 2023. Plasma membrane association and resistosome formation of plant helper immune receptors. Proc. Natl. Acad. Sci. U. S. A. 120, e2222036120.
    Xing, W., Zou, Y., Liu, Q., Liu, J., Luo, X., Huang, Q., Chen, S., Zhu, L., Bi, R., Hao, Q., et al., 2007. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449, 243-247.
    Xue, N., Zhan, C., Song, J., Li, Y., Zhang, J., Qi, J., Wu, J., 2022. The glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect herbivores in Arabidopsis. J. Exp. Bot. 73, 7611-7627.
    Xu, G., Moeder, W., Yoshioka, K., Shan, L., 2022. A tale of many families: calcium channels in plant immunity. Plant Cell 34, 1551-1567.
    Yamaguchi, Y., Pearce, G., Ryan, C.A., 2006. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc. Natl. Acad. Sci. U. S. A. 103, 10104-10109.
    Yang, H., Kim, X., Sklenar, J., Aubourg, S., Sancho-Andres, G., Stahl, E., Guillou, M.-C., Gigli-Bisceglia, N., Tran Van Canh, L., Bender, K.W., Stintzi, A., et al., 2023. Subtilase-mediated biogenesis of the expanded family of SERINE RICH ENDOGENOUS PEPTIDES. Nat. Plants 1-10.
    Yoshioka, K., Moeder, W., Kang, H.-G., Kachroo, P., Masmoudi, K., Berkowitz, G., Klessig, D.F., 2006. The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses. Plant Cell 18, 747-763.
    Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., et al., 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367-371.
    Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y., Cai, B., Zhou, J.-M., He, S.Y., Xin, X.-F., 2021a. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105-109.
    Yuan, M., Ngou, B.P.M., Ding, P., Xin, X.-F., 2021b. PTI-ETI crosstalk: an integrative view of plant immunity. Curr. Opin. Plant Biol. 62, 102030.
    Yuan, P., Jauregui, E., Du, L., Tanaka, K., Poovaiah, B.W., 2017. Calcium signatures and signaling events orchestrate plant-microbe interactions. Curr. Opin. Plant Biol. 38, 173-183.
    Yu, X., Xu, G., Li, B., de Souza Vespoli, L., Liu, H., Moeder, W., Chen, S., de Oliveira, M.V.V., Ariadina de Souza, S., Shao, W., et al., 2019. The receptor kinases BAK1/SERK4 regulate Ca2+ channel-mediated cellular homeostasis for cell death containment. Curr. Biol. 29, 3778-3790.e8.
    Zavaliev, R., Mohan, R., Chen, T., Dong, X., 2020. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182, 1093-1108.e18.
    Zdrzalek, R., Stone, C., De la Concepcion, J.C., Banfield, M.J., Bentham, A.R., 2023. Pathways to engineering plant intracellular NLR immune receptors. Curr. Opin. Plant Biol. 74, 102380.
    Zhang, L., Hua, C., Janocha, D., Fliegmann, J., Nurnberger, T., 2023. Plant cell surface immune receptors-Novel insights into function and evolution. Curr. Opin. Plant Biol. 74, 102384.
    Zhang, W., Fraiture, M., Kolb, D., Loffelhardt, B., Desaki, Y., Boutrot, F.F.G., Tor, M., Zipfel, C., Gust, A.A., Brunner, F., 2013. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25, 4227-4241.
    Zhang, Y., Chen, X., Gueydan, C., Han, J., 2018. Plasma membrane changes during programmed cell deaths. Cell Res. 28, 9-21.
    Zhang, L., Kars, I., Essenstam, B., Liebrand, T.W.H., Wagemakers, L., Elberse, J., Tagkalaki, P., Tjoitang, D., van den Ackerveken, G., van Kan, J.A.L., 2014. Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol. 164, 352-364.
    Zhang, Y., Li, X., 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 50, 29-36.
    Zhang, Z., Shrestha, J., Tateda, C., Greenberg, J.T., 2014. Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein ACCELERATED CELL DEATH6. Mol. Plant 7, 1365-1383.
    Zhao, C., Tang, Y., Wang, J., Zeng, Y., Sun, H., Zheng, Z., Su, R., Schneeberger, K., Parker, J.E., Cui, H., 2021. A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytol. 230, 1078-1094.
    Zhao, Y.-B., Liu, M.-X., Chen, T.-T., Ma, X., Li, Z.-K., Zheng, Z., Zheng, S.-R., Chen, L., Li, Y.-Z., Tang, L.-R., et al., 2022. Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Sci. Adv. 8, eabq5108.
    Zhao, Y., Zhu, X., Chen, X., Zhou, J.-M., 2022. From plant immunity to crop disease resistance. J. Genet. Genomics 49, 693-703.
    Zheng, X., Zhou, Z., Gong, Z., Hu, M., Ahn, Y.J., Zhang, X., Zhao, Y., Gong, G., Zhang, J., Zuo, J., et al., 2022. Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. J. Genet. Genomics 49, 823-832.
    Zhou, F., Emonet, A., Denervaud Tendon, V., Marhavy, P., Wu, D., Lahaye, T., Geldner, N., 2020. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180, 440-453.e18.
    Zhou, J.-M., Chai, J., 2008. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 11, 179-185.
    Zhou, Y., Niu, R., Tang, Z., Mou, R., Wang, Z., Zhu, S., Yang, H., Ding, P., Xu, G., 2023. Plant HEM1 specifies a condensation domain to control immune gene translation. Nat. Plants 9, 289-301.
    Zhu, J., Lolle, S., Tang, A., Guel, B., Kvitko, B., Cole, B., Coaker, G., 2023a. Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep. 42, 112676.
    Zhu, J., Moreno-Perez, A., Coaker, G., 2023b. Understanding plant pathogen interactions using spatial and single-cell technologies. Commun. Biol. 6, 814.
    Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., Felix, G., 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return