8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 7
Jul.  2024
Turn off MathJax
Article Contents

shinyTempSignal: an R shiny application for exploring temporal and other phylogenetic signals

doi: 10.1016/j.jgg.2024.02.004
Funds:

This study was supported by the National Natural Science Foundation of China (32270677).

  • Received Date: 2023-12-14
  • Accepted Date: 2024-02-22
  • Rev Recd Date: 2024-02-20
  • Available Online: 2025-06-06
  • Publish Date: 2024-02-26
  • The molecular clock model is fundamental for inferring species divergence times from molecular sequences. However, its direct application may introduce significant biases due to sequencing errors, recombination events, and inaccurately labeled sampling times. Improving accuracy necessitates rigorous quality control measures to identify and remove potentially erroneous sequences. Furthermore, while not all branches of a phylogenetic tree may exhibit a clear temporal signal, specific branches may still adhere to the assumptions, with varying evolutionary rates. Supporting a relaxed molecular clock model better aligns with the complexities of evolution. The root-to-tip regression method has been widely used to analyze the temporal signal in phylogenetic studies and can be generalized for detecting other phylogenetic signals. Despite its utility, there remains a lack of corresponding software implementations for broader applications. To address this gap, we present shinyTempSignal, an interactive web application implemented with the shiny framework, available as an R package and publicly accessible at https://github.com/YuLab-SMU/shinyTempSignal. This tool facilitates the analysis of temporal and other phylogenetic signals under both strict and relaxed models. By extending the root-to-tip regression method to diverse signals, shinyTempSignal helps in the detection of evolving features or traits, thereby laying the foundation for deeper insights and subsequent analyses.
  • loading
  • Andersen, K.G., Shapiro, B.J., Matranga, C.B., Sealfon, R., Lin, A.E., Moses, L.M., Folarin, O.A., Goba, A., Odia, I.,Ehiane, P.E., 2015. Clinical sequencing uncovers origins and evolution of lassa virus. Cell 162, 738-750.
    Blomberg, S.P.,Garland Jr, T., 2002. Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods. Journal of evolutionary biology 15, 899-910.
    Doizy, A., Prin, A., Cornu, G., Chiroleu, F.,Rieux, A., 2023. Phylostems: A new graphical tool to investigate temporal signal of heterochronous sequences datasets. Bioinformatics Advances 3, vbad026.
    Drummond, A.J., Pybus, O.G., Rambaut, A., Forsberg, R.,Rodrigo, A.G., 2003. Measurably evolving populations. Trends in ecology & evolution 18, 481-488.
    Drummond, A.J.,Rambaut, A., 2007. Beast: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
    Felsenstein, J., 1985. Phylogenies and the comparative method. The American Naturalist 125, 1-15.
    Ferreira, M.A.,Suchard, M.A., 2008. Bayesian analysis of elapsed times in continuous-time markov chains. Canadian Journal of Statistics 36, 355-368.
    Ferreira, R.-C., Wong, E.,Poon, A.F., 2023. Bayroot: Bayesian sampling of hiv-1 integration dates by root-to-tip regression. Virus Evolution 9, veac120.
    Geoghegan, J.L.,Holmes, E.C., 2018. The phylogenomics of evolving virus virulence. Nature Reviews Genetics 19, 756-769.
    Hatcher, E.L., Zhdanov, S.A., Bao, Y., Blinkova, O., Nawrocki, E.P., Ostapchuck, Y., Schaffer, A.A.,Brister, J.R., 2017. Virus variation resource-improved response to emergent viral outbreaks. Nucleic acids research 45, D482-D490.
    Kerr, P.J., Cattadori, I.M., Liu, J., Sim, D.G., Dodds, J.W., Brooks, J.W., Kennett, M.J., Holmes, E.C.,Read, A.F., 2017. Next step in the ongoing arms race between myxoma virus and wild rabbits in australia is a novel disease phenotype. Proceedings of the National Academy of Sciences 114, 9397-9402.
    Kiu, R., Shaw, A.G., Sim, K., Acuna-Gonzalez, A., Price, C.A., Bedwell, H., Dreger, S.A., Fowler, W.J., Cornwell, E.,Pickard, D., 2023. Particular genomic and virulence traits associated with preterm infant-derived toxigenic clostridium perfringens strains. Nature Microbiology, 1-16.
    Kumar, S., Stecher, G., Li, M., Knyaz, C.,Tamura, K., 2018. Mega x: Molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35, 1547.
    Kumar, S., Tamura, K.,Nei, M., 1994. Mega: Molecular evolutionary genetics analysis software for microcomputers. Bioinformatics 10, 189-191.
    Lipsitch, M., Siller, S.,Nowak, M.A., 1996. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50, 1729-1741.
    Long, C., Zhang, B.,Ma, S., 2012. Research progress of molecular clock. Agricultural Science & Technology 13, 2496-2498,2553.
    Ma, K.,Chen, J., 2022. Omicron xe emerges as sars-cov-2 keeps evolving. The Innovation 3, 100248.
    Munkemuller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K.,Thuiller, W. 2012. How to measure and test phylogenetic signal. Methods in ecology and evolution, 3 (4), 743-756.
    Pagan, I., Montes, N., Milgroom, M.G.,Garcia-Arenal, F., 2014. Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. PLoS Pathogens 10, e1004293.
    Paradis, E., Claude, J.,Strimmer, K., 2004. Ape: Analyses of phylogenetics and evolution in r language. Bioinformatics 20, 289-290.
    Pinheiro, J., Bates, D., DebRoy, S.,Sarkar, D., 2012. Nonlinear mixed-effects models. R package version 3, 1-89.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D.,Team, R.C., 2007. Linear and nonlinear mixed effects models. R package version 3, 1-89.
    Rambaut, A., Lam, T.T., Max Carvalho, L.,Pybus, O.G., 2016. Exploring the temporal structure of heterochronous sequences using tempest (formerly path-o-gen). Virus evolution 2, vew007.
    Wang, L.-G., Lam, T.T.-Y., Xu, S., Dai, Z., Zhou, L., Feng, T., Guo, P., Dunn, C.W., Jones, B.R.,Bradley, T., 2020. Treeio: An r package for phylogenetic tree input and output with richly annotated and associated data. Molecular biology and evolution 37, 599-603.
    Wang, L., Didelot, X., Bi, Y.,Gao, G.F., 2021. Assessing the extent of community spread caused by mink-derived sars-cov-2 variants. The Innovation 2, 100128.
    Xu, S., Dai, Z., Guo, P., Fu, X., Liu, S., Zhou, L., Tang, W., Feng, T., Chen, M.,Zhan, L., 2021. Ggtreeextra: Compact visualization of richly annotated phylogenetic data. Molecular biology and evolution 38, 4039-4042.
    Xu, S., Li, L., Luo, X., Chen, M., Tang, W., Zhan, L., Dai, Z., Lam, T.T., Guan, Y.,Yu, G., 2022. Ggtree: A serialized data object for visualization of a phylogenetic tree and annotation data. IMeta 1, e56.
    Yoder, A.D.,Yang, Z., 2000. Estimation of primate speciation dates using local molecular clocks. Molecular biology and evolution 17, 1081-1090.
    Yu, G., 2022. Data integration, manipulation and visualization of phylogenetic trees. CRC Press.
    Yu, G., Smith, D.K., Zhu, H., Guan, Y.,Lam, T.T.Y., 2017. Ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8, 28-36.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return