8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 6
Jun.  2024
Turn off MathJax
Article Contents

Sensing of membrane tensions: the pleiotropic functions of OSCA/TMEM63 mechanosensitive ion channels

doi: 10.1016/j.jgg.2024.02.002
Funds:

This work was supported by the Science and Technology Commission of Shanghai Municipality (22ZR1481400 to Y. Z.), the STI 2030 - Major Projects (2023ZD040710X), and the Shanghai Center for Plant Stress Biology from the Chinese Academy of Sciences.

  • Received Date: 2024-01-18
    Available Online: 2025-06-06
  • Publish Date: 2024-02-16
  • loading
  • Buda, R., Liu, Y.X., Yang, J., Hegde, S., Stevenson, K., Bai, F., Pilizota, T., 2016. Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity. Proc. Natl. Acad. Sci. U. S. A. 113, E5838-E5846.
    Chen, G.-L., Li, J.-Y., Chen, X., Liu, J.-W., Zhang, Q., Liu, J.-Y., Wen, J., Wang, N., Lei, M., Wei, J.-P., et al., 2023. Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. J. Clin. Invest, e174508.
    Codjoe, J.M., Miller, K., Haswell, E.S., 2022. Plant cell mechanobiology: greater than the sum of its parts. Plant Cell 34, 129-145.
    Du, H., Ye, C., Wu, D., Zang, Y.Y., Zhang, L.Q., Chen, C., He, X.Y., Yang, J.J., Hu, P., Xu, Z.F., et al., 2020. The cation channel TMEM63B is an osmosensor required for hearing. Cell Rep. 31, 107596.
    Helliwell, K.E., Kleiner, F.H., Hardstaff, H., Chrachri, A., Gaikwad, T., Salmon, D., Smirnoff, N., Wheeler, G.L., Brownlee, C., 2021. Spatiotemporal patterns of intracellular Ca2+ signalling govern hypo-osmotic stress resilience in marine diatoms. New Phytol. 230, 155-170.
    Hou, C., Tian, W., Kleist, T., He, K., Garcia, V., Bai, F., Hao, Y., Luan, S., Li, L., 2014. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24, 632-635.
    Hsu, P.K., Takahashi, Y., Merilo, E., Costa, A., Zhang, L., Kernig, K., Lee, K.H., Schroeder, J.I., 2021. Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor pressure difference response. Proc. Natl. Acad. Sci. U. S. A. 118, e2107280118.
    Jojoa-Cruz, S., Saotome, K., Murthy, S.E., Tsui, C.C.A., Sansom, M.S., Patapoutian, A., Ward, A.B., 2018. Cryo-EM structure of the mechanically activated ion channel OSCA1.2. Elife 7, e41845.
    Kefauver, J.M., Ward, A.B., Patapoutian, A., 2020. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567-576.
    Li, Q., Montell, C., 2021. Mechanism for food texture preference based on grittiness. Curr. Biol. 31, 1850-1861.
    Li, K., Guo, Y., Wang, Y., Zhu, R., Chen, W., Cheng, T., Zhang, X., Jia, Y., Liu, T., Zhang, W., Jan, L.Y., Jan, Y.N., 2024. Drosophila TMEM63 and mouse TMEM63A are lysosomal mechanosensory ion channels. Nat Cell Biol. https://doi.org/10.1038/s41556-024-01353-7.
    Li, S.L., Li, B.X., Gao, L., Wang, J.W., Yan, Z.Q., 2022. Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63. Nat. Commun. 13, 3814.
    Liu, X., Wang, J., Sun, L., 2018. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat. Commun. 9, 5060.
    Maity, K., Heumann, J.M., McGrath, A.P., Kopcho, N.J., Hsu, P.K., Lee, C.W., Mapes, J.H., Garza, D., Krishnan, S., Morgan, G.P., et al., 2019. Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc. Natl. Acad. Sci. U. S. A. 116, 14309-14318.
    Murthy, S.E., Dubin, A.E., Whitwam, T., Jojoa-Cruz, S., Cahalan, S.M., Mousavi, S.A.R., Ward, A.B., Patapoutian, A., 2018. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. Elife 7, e41844.
    Pei, S.Y., Liu, Y.T., Li, W.K., Krichilsky, B., Dai, S.W., Wang, Y., Wang, X., Johnson, D.M., Crawford, B.M., Swift, G.B., et al., 2022. OSCA1 is an osmotic specific sensor: a method to distinguish Ca2+-mediated osmotic and ionic perception. New Phytol. 235, 1665-1678.
    Qin, Y.Q., Yu, D.Q., Wu, D., Dong, J.Q., Li, W.T., Ye, C., Cheung, K.C., Zhang, Y.Y., Xu, Y., Wang, Y.Q., et al., 2023. Cryo-EM structure of TMEM63C suggests it functions as a monomer. Nat. Commun. 14, 7265.
    Schulz, A., Muller, N.V., van de Lest, N.A., Eisenreich, A., Schmidbauer, M., Barysenka, A., Purfurst, B., Sporbert, A., Lorenzen, T., Meyer, A.M., et al., 2019. Analysis of the genomic architecture of a complex trait locus in hypertensive rat models links Tmem63c to kidney damage. Elife 8, e42068.
    Syeda, R., Qiu, Z.Z., Dubin, A.E., Murthy, S.E., Florendo, M.N., Mason, D.E., Mathur, J., Cahalan, S.M., Peters, E.C., Montal, M., et al., 2016. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164, 499-511.
    Tabara, L.C., Al-Salmi, F., Maroofian, R., Al-Futaisi, A.M., Al-Murshedi, F., Kennedy, J., Day, J.O., Courtin, T., Al-Khayat, A., Galedari, H., et al., 2022. TMEM63C mutations cause mitochondrial morphology defects and underlie hereditary spastic paraplegia. Brain 145, 3095-3107.
    Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., Leitao, N., DeFalco, T.A., et al., 2020. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature, 585, 569-573.
    Tonduti, D., Mura, E., Masnada, S., Bertini, E., Aiello, C., Zini, D., Parmeggiani, L., Cantalupo, G., Talenti, G., Veggiotti, P., et al., 2021. Spinal cord involvement and paroxysmal events in “Infantile Onset Transient Hypomyelination” due to TMEM63A mutation. J. Hum. Genet. 66, 1035-1037.
    Vetro, A., Pelorosso, C., Balestrini, S., Masi, A., Hambleton, S., Argilli, E., Conti, V., Giubbolini, S., Barrick, R., Bergant, G., et al., 2023. Stretch-activated ion channel TMEM63B associates with developmental and epileptic encephalopathies and progressive neurodegeneration. Am. J. Hum. Genet. 110, 1356-1376.
    Yan, H.F., Helman, G., Murthy, S.E., Ji, H.R., Crawford, J., Kubisiak, T., Bent, S.J., Xiao, J.X., Taft, R.J., Coombs, A., et al., 2019. Heterozygous variants in the mechanosensitive ion channel TMEM63A result in transient hypomyelination during infancy. Am. J. Hum. Genet. 105, 996-1004.
    Yang, G., Jia, M., Li, G., Zang, Y.-Y., Chen, Y.-Y., Wang, Y.-Y., Zhan, S.-Y., Peng, S.-X., Wan, G., Li, W., et al., 2024. TMEM63B channel is the osmosensor required for thirst drive of interoceptive neurons. Cell Discov. 10, 1.
    Ye, C., Zhang, T.-Z., Zang, Y.-Y., Shi, Y.S., Wan, G., 2023. TMEM63B regulates postnatal development of cochlear sensory epithelia via thyroid hormone signaling. J. Genet. Genomics, https://doi.org/10.1016/j.jgg.2023.12.006.
    Yu, B., Chao, D.-Y., Zhao, Y., 2024. How plants sense and respond to osmotic stress. J. Integr. Plant Biol., https://doi.org/10.1111/jipb.13622.
    Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., et al., 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367-371.
    Zhang, M., Shan, Y., Cox, C.D., Pei, D., 2023. A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity. Nat. Commun. 14, 3943.
    Zhang, M.F., Wang, D.L., Kang, Y.L., Wu, J.X., Yao, F.Q., Pan, C.F., Yan, Z.Q., Song, C., Chen, L., 2018. Structure of the mechanosensitive OSCA channels. Nat. Struct. Mol. Biol. 25, 850-858.
    Zheng, W., Rawson, S., Shen, Z., Tamilselvan, E., Smith, H.E., Halford, J., Shen, C., Murthy, S.E., Ulbrich, M.H., Sotomayor, M., et al., 2023. TMEM63 proteins function as monomeric high-threshold mechanosensitive ion channels. Neuron 111, 3195-3210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (1) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return