Alvarez, M.E., Nota, F., Cambiagno, D.A., 2010. Epigenetic control of plant immunity. Mol. Plant Pathol. 11, 563-576.
|
Arribas-Hernandez, L., Bressendorff, S., Hansen, M.H., Poulsen, C., Erdmann, S., Brodersen, P., 2018. An m(6)A-YTH module controls developmental timing and morphogenesis in Arabidopsis. Plant Cell 30, 952-967.
|
Bailey-Serres, J., Parker, J.E., Ainsworth, E.A., Oldroyd, G.E.D., Schroeder, J.I., 2019. Genetic strategies for improving crop yields. Nature 575, 109-118.
|
Berr, A., Shafiq, S., Shen, W.H., 2011. Histone modifications in transcriptional activation during plant development. Biochim. Biophys Acta. 1809, 567-576.
|
Bonasio, R., Tu, S., Reinberg, D., 2010. Molecular signals of epigenetic states. Science 330, 612-616.
|
Candaele, J., Demuynck, K., Mosoti, D., Beemster, G.T.S., Inze, D., Nelissen, H., 2014. Differential methylation during maize leaf growth targets developmentally regulated genes. Plant Physiol. 164, 1350-1364.
|
Cao, Y., Zeng, H., Ku, L., Ren, Z., Han, Y., Su, H., Dou, D., Liu, H., Dong, Y., Zhu, F., et al., 2020. ZmIBH1-1 regulates plant architecture in maize. J. Exp. Bot. 71, 2943-2955.
|
Casati, P., Campi, M., Chu, F.X., Suzuki, N., Maltby, D., Guan, S.H., Burlingame, A.L., Walbot, V., 2008. Histone acetylation and chromatin remodeling are required for UV-B-dependent transcriptional activation of regulated genes in maize. Plant Cell 20, 827-842.
|
Castelletti, S., Tuberosa, R., Pindo, M., Salvi, S., 2014. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3 (Bethesda, Md.) 4, 805-812.
|
Centore, R.C., Sandoval, G.J., Soares, L.M.M., Kadoch, C., Chan, H.M., 2020. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936-950.
|
Chen, W.K., Chen, L., Zhang, X., Yang, N., Guo, J.H., Wang, M., Ji, S.H., Zhao, X.Y., Yin, P.F., Cai, L.C., et al., 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375, 1372-1381.
|
Cui, X., Liang, Z., Shen, L., Zhang, Q., Bao, S., Geng, Y., Zhang, B., Leo, V., Vardy, L.A., Lu, T., et al., 2017. 5-Methylcytosine RNA methylation in Arabidopsis Thaliana. Mol. Plant 10, 1387-1399.
|
Dalakouras, A., Vlachostergios, D., 2021. Epigenetic approaches to crop breeding: current status and perspectives. J. Exp. Bot. 72, 5356-5371.
|
David, R., Burgess, A., Parker, B., Li, J., Pulsford, K., Sibbritt, T., Preiss, T., Searle, I.R., 2017. Transcriptome-wide mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and noncoding RNAs. Plant Cell 29, 445-460.
|
de Melo, B.P., Lourenco-Tessutti, I.T., Paixao, J.F.R., Noriega, D.D., Silva, M.C.M., de Almeida-Engler, J., Fontes, E.P.B., Grossi-de-Sa, M.F., 2020. Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Sci. Rep. 10, 16231.
|
Deng, Y.W., Zhai, K.R., Xie, Z., Yang, D.Y., Zhu, X.D., Liu, J.Z., Wang, X., Qin, P., Yang, Y.Z., Zhang, G.M., et al., 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962-965.
|
, Frost, J.M., Branco, M.R., 2019. Regulation of transposable elements by DNA modifications. Nature reviews. Genetics 20, 417-431.
|
Dhakate, P., Sehgal, D., Vaishnavi, S., Chandra, A., Singh, A., Raina, S.N., Rajpal, V.R., 2022. Comprehending the evolution of gene editing platforms for crop trait improvement. Front. Genet. 13, 876987.
|
Dong, X.M., Li, Y., Chao, Q., Shen, J., Gong, X.J., Zhao, B.G., Wang, B.C., 2016. Analysis of gene expression and histone modification between C4 and non-C4 homologous genes of PPDK and PCK in maize. Photosynth Res. 129, 71-83.
|
Dong, X.M., Zhang, M., Chen, J., Peng, L.Z., Zhang, N., Wang, X., Lai, J.S., 2017. Dynamic and antagonistic allele-specific epigenetic modifications controlling the expression of imprinted genes in maize endosperm. Mol. Plant 10, 442-455.
|
Dou, D., Han, S., Cao, L., Ku, L., Liu, H., Su, H., Ren, Z., Zhang, D., Zeng, H., Dong, Y., et al., 2021. CLA4 regulates leaf angle through multiple hormone signaling pathways in maize. J. Exp. Bot. 72, 1782-1794.
|
Du, J.M., Johnson, L.M., Jacobsen, S.E., Patel, D.J., 2015. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Bio. 16, 519-532.
|
Du, Q., Wang, K., Zou, C., Xu, C., Li, W.X., 2018. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize. Plant Physiol. 177, 1743-1753.
|
Duan, H.C., Wei, L.H., Zhang, C., Wang, Y., Chen, L., Lu, Z., Chen, P.R., He, C., Jia, G., 2017. ALKBH10B is an RNA N(6)-Methyladenosine demethylase affecting Arabidopsis floral transition. Plant Cell 29, 2995-3011.
|
Dunn, D.B., Smith, J.D., 1955. Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature 175, 336-337.
|
Eichten, S.R., Briskine, R., Song, J., Li, Q., Swanson-Wagner, R., Hermanson, P.J., Waters, A.J., Starr, E., West, P.T., Tiffin, P., et al., 2013. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25, 2783-2797.
|
Erdmann, R.M., Souza, A.L., Clish, C.B., Gehring, M., 2014. 5-hydroxymethylcytosine is not present in appreciable quantities in Arabidopsis DNA. G3 (Bethesda, Md.) 5, 1-8.
|
Feng, S., Cokus, S.J., Zhang, X., Chen, P.Y., Bostick, M., Goll, M.G., Hetzel, J., Jain, J., Strauss, S.H., Halpern, M.E., et al., 2010. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. U. S. A. 107, 8689-8694.
|
Forestan, C., Farinati, S., Rouster, J., Lassagne, H., Lauria, M., Dal Ferro, N., Varotto, S., 2018. Control of maize vegetative and reproductive development, fertility, and rRNAs silencing by HISTONE DEACETYLASE 108. Genetics 208, 1443-1466.
|
Gallego-Bartolome, J., Liu, W., Kuo, P.H., Feng, S., Ghoshal, B., Gardiner, J., Zhao, J.M., Park, S.Y., Chory, J., Jacobsen, S.E., 2019. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell 176, 1068-1082.e1019.
|
Gao, H., Cui, J., Liu, S., Wang, S., Lian, Y., Bai, Y., Zhu, T., Wu, H., Wang, Y., Yang, S., et al., 2022. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Mol. Plant 15, 1558-1574.
|
Gautam, V., Singh, A., Yadav, S., Singh, S., Kumar, P., Das, S.S., Sarkar, A.K., 2021. Conserved LBL1-ta-siRNA and miR165/166-RLD1/2 modules regulate root development in maize. Development 148, dev190033.
|
Gawra, J., Valdivieso, A., Roux, F., Laporte, M., de Lorgeril, J., Gueguen, Y., Saccas, M., Escoubas, J.-M., Montagnani, C., Destoumieux-Garzόn, D., et al., 2023. Epigenetic variations are more substantial than genetic variations in rapid adaptation of oyster to Pacific oyster mortality syndrome. Sci. Adv. 9, eadh8990.
|
Gent, J.I., Ellis, N.A., Guo, L., Harkess, A.E., Yao, Y.Y., Zhang, X.Y., Dawe, R.K., 2013. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res. 23, 628-637.
|
Gilbert, W.V., Bell, T.A., Schaening, C., 2016. Messenger RNA modifications: form, distribution, and function. Science 352, 1408-1412.
|
Gu, X.F., Jiang, D.H., Yang, W.N., Jacob, Y., Michaels, S.D., He, Y.H., 2011. Homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PloS Genet. 7, e1002366.
|
Guo, W., Liu, H., Wang, Y., Zhang, P., Li, D., Liu, T., Zhang, Q., Yang, L., Pu, L., Tian, J., et al., 2022. SMOC: a smart model for open chromatin region prediction in rice genomes. J. Genet. Genomics 49, 514-517.
|
Guo, W., Wang, D., Lisch, D., 2021. RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genet. 17, e1009326.
|
Gupta, C., Salgotra, R.K., 2022. Epigenetics and its role in effecting agronomical traits. Front. Plant Sci. 13, 925688.
|
Hao, Z.Y., Wu, T., Cui, X.L., Zhu, P.P., Tan, C.P., Dou, X.Y., Hsu, K.W., Lin, Y.T., Peng, P.H., Zhang, L.S., et al., 2020. N6-Deoxyadenosine methylation in mammalian mitochondrial DNA. Mol. Cell 78, 382-395.
|
Hawkins, E., Fricker, T.E., Challinor, A.J., Ferro, C.A., Ho, C.K., Osborne, T.M., 2013. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob. Chang Biol. 19, 937-947.
|
Hou, H., Zhao, L., Zheng, X., Gautam, M., Yue, M., Hou, J., Chen, Z., Wang, P., Li, L., 2019a. Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings. Protoplasma 256, 1245-1256.
|
Hu, Y.F., Li, Y.P., Weng, J.F., Liu, H.M., Yu, G.W., Liu, Y.H., Xiao, Q.L., Huang, H.N., Wang, Y.B., Wei, B., et al., 2021. Coordinated regulation of starch synthesis in maize endosperm by microRNAs and DNA methylation. Plant J. 105, 108-123.
|
Jenuwein, T., Allis, C.D., 2001. Translating the histone code. Science 293, 1074-1080.
|
Jia, H.T., Li, M.F., Li, W.Y., Liu, L., Jian, Y.A., Yang, Z.X., Shen, X.M., Ning, Q., Du, Y.F., Zhao, R., et al., 2020. A serine/threonine protein kinase encoding gene regulates maize grain yield. Nat. Commun. 11, 988.
|
Kang, H., Fan, T., Wu, J., Zhu, Y., Shen, W.H., 2022. Histone modification and chromatin remodeling in plant response to pathogens. Front. Plant Sci. 13, 986940.
|
Kim, E.Y., Kim, K.D., Cho, J., 2022. Harnessing epigenetic variability for crop improvement: current status and future prospects. Genes Genom. 44, 259-266.
|
Kong, D.X., Wang, B.B., Wang, H.Y., 2020. UPA2 and ZmRAVL1: promising targets of genetic improvement of maize plant architecture. J. Integr. Plant Biol. 62, 394-397.
|
Li, C.H., Li, Y.X., Sun, B.C., Peng, B., Liu, C., Liu, Z.Z., Yang, Z.Z., Li, Q.C., Tan, W.W., Zhang, Y., et al., 2013. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica 193, 303-316.
|
Li, Q., Eichten, S.R., Hermanson, P.J., Zaunbrecher, V.M., Song, J., Wendt, J., Rosenbaum, H., Madzima, T.F., Sloan, A.E., Huang, J., et al., 2014. Genetic perturbation of the maize methylome. Plant Cell 26, 4602-4616.
|
Liang, Z., Anderson, S.N., Noshay, J.M., Crisp, P.A., Enders, T.A., Springer, N.M., 2021. Genetic and epigenetic variation in transposable element expression responses to abiotic stress in maize. Plant Physiol. 186, 420-433.
|
Liang, Z., Riaz, A., Chachar, S., Ding, Y., Du, H., Gu, X., 2020. Epigenetic modifications of mRNA and DNA in plants. Mol. Plant 13, 14-30.
|
Liang, Z., Shen, L., Cui, X., Bao, S., Geng, Y., Yu, G., Liang, F., Xie, S., Lu, T., Gu, X., et al., 2018. DNA N(6)-Adenine methylation in Arabidopsis thaliana. Dev. Cell 45, 406-416.e403.
|
Lieberman-Lazarovich, M., Kaiserli, E., Bucher, E., Mladenov, V., 2022. Natural and induced epigenetic variation for crop improvement. Curr. Opin. Plant Biol. 70, 102297.
|
Liu, S., Sretenovic, S., Fan, T., Cheng, Y., Li, G., Qi, A., Tang, X., Xu, Y., Guo, W., Zhong, Z., et al., 2022. Hypercompact CRISPR-Cas12j2 (CasΦ) enables genome editing, gene activation, and epigenome editing in plants. Plant Commun. 3, 100453.
|
Liu, Z.B., Cook, J., Melia-Hancock, S., Guill, K., Bottoms, C., Garcia, A., Ott, O., Nelson, R., Recker, J., Balint-Kurti, P., et al., 2016. Expanding maize genetic resources with predomestication alleles: maize-teosinte introgression populations. Plant Genome 9, 1-11.
|
Locatelli, S., Piatti, P., Motto, M., Rossi, V., 2009. Chromatin and DNA modifications in the Opaque2-mediated regulation of gene transcription during maize endosperm development. Plant Cell 21, 1410-1427.
|
Long, J., Liu, J., Xia, A., Springer, N.M., He, Y., 2021. Maize decrease in DNA methylation 1 targets RNA-directed DNA methylation on active chromatin. Plant Cell 33, 2183-2196.
|
Long, J.C., Xia, A.A., Liu, J.H., Jing, J.L., Wang, Y.Z., Qi, C.Y., He, Y., 2019. Decrease in DNA methylation 1 (DDM1) is required for the formation of (m) CHH islands in maize. J. Integr. Plant Biol. 61, 749-764.
|
Low, D.A., Weyand, N.J., Mahan, M.J., 2001. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69, 7197-7204.
|
Lu, Y., Rong, T., Cao, M., 2008. Analysis of DNA methylation in different maize tissues. J. Genet. Genomics 35, 41-48.
|
Luo, J.H., Wang, Y., Wang, M., Zhang, L.Y., Peng, H.R., Zhou, Y.Y., Jia, G.F., He, Y., 2020. Natural variation in RNA m(6)A methylation and its relationship with translational status. Plant Physiol. 182, 332-344.
|
Luo, Y., Zhang, M., Liu, Y., Liu, J., Li, W., Chen, G., Peng, Y., Jin, M., Wei, W., Jian, L., et al., 2022. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol. 234, 513-526.
|
Luo, Z., Han, L., Qian, J., Li, L., 2019. Circular RNAs exhibit extensive intraspecific variation in maize. Planta 250, 69-78.
|
Luo., J.-H., Guo., T., Wang., M., Liu., J.-H., Zheng., L.-M., He., Y., 2023. RNA m6A modification facilitates DNA methylation during maize kernel development. Plant Physiol. kiad625.
|
Lynch, J.P., 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347-357.
|
Maqbool, S., Hassan, M.A., Xia, X.C., York, L.M., Rasheed, A., He, Z.H., 2022. Root system architecture in cereals: progress, challenges and perspective. Plant J. 110, 23-42.
|
Mascheretti, I., Battaglia, R., Mainieri, D., Altana, A., Lauria, M., Rossi, V., 2013. The WD40-repeat proteins NFC101 and NFC102 regulate different aspects of maize development through chromatin modification. Plant Cell 25, 404-420.
|
Meister, R., Rajani, M.S., Ruzicka, D., Schachtman, D.P., 2014. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 19, 779-788.
|
Meng, X., Yu, X., Wu, Y., Kim, D.H., Nan, N., Cong, W., Wang, S., Liu, B., Xu, Z.Y., 2020. Chromatin remodeling protein ZmCHB101 regulates nitrate-responsive gene expression in maize. Front. Plant Sci. 11, 52.
|
Merce, C., Bayer, P.E., Fernandez, C.T., Batley, J., Edwards, D., 2020. Induced methylation in plants as a crop improvement tool: progress and perspectives. Agronomy-Basel 10, 1484.
|
Messmer, R., Fracheboud, Y., Banziger, M., Vargas, M., Stamp, P., Ribaut, J.M., 2009. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor. Appl. Genet. 119, 913-930.
|
Miao, Z., Zhang, T., Qi, Y., Song, J., Han, Z., Ma, C., 2020. Evolution of the RNA N (6)-Methyladenosine methylome mediated by genomic duplication. Plant Physiol. 182, 345-360.
|
Middeljans, E., Wan, X., Jansen, P.W., Sharma, V., Stunnenberg, H.G., Logie, C., 2012. SS18 Together with animal-specific factors defines human BAF-type SWI/SNF complexes. PloS One 7, e33834.
|
Moussa, H.F., Angstman, J.F., Khalil, A.S., 2021. Here to stay: writing lasting epigenetic memories. Cell 184, 2281-2283.
|
Nelissen, H., Eeckhout, D., Demuynck, K., Persiau, G., Walton, A., van Bel, M., Vervoort, M., Candaele, J., De Block, J., Aesaert, S., et al., 2015. Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant cell 27, 1605-1619.
|
Niederhuth, C.E., Schmitz, R.J., 2017. Putting DNA methylation in context: from genomes to gene expression in plants. Biochimica et biophysica acta. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 149-156.
|
Noshay, J.M., Anderson, S.N., Zhou, P., Ji, L.X., Ricci, W., Lu, Z.F., Stitzer, M.C., Crisp, P.A., Hirsch, C.N., Zhang, X.Y., et al., 2019. Monitoring the interplay between transposable element families and DNA methylation in maize. PloS Genet. 15, e1008291.
|
Nunez, J.K., Chen, J., Pommier, G.C., Cogan, J.Z., Replogle, J.M., Adriaens, C., Ramadoss, G.N., Shi, Q., Hung, K.L., Samelson, A.J., et al., 2021. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503-2519.e2517.
|
Papikian, A., Liu, W., Gallego-Bartolome, J., Jacobsen, S.E., 2019. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 10, 729.
|
Park, M., Williams, D.S., Turpin, Z.M., Wiggins, Z.J., Tsolova, V.M., Onokpise, O.U., Bass, H.W., 2021. Differential nuclease sensitivity profiling uncovers a drought responsive change in maize leaf chromatin structure for two large retrotransposon derivatives, Uloh and Vegu. Plant Direct 5, e337.
|
Peterson, C.L., Dingwall, A., Scott, M.P., 1994. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc. Natl. Acad. Sci. U. S. A. 91, 2905-2908.
|
Pintor-Toro, J.A., 1987. Adenine methylation in zein genes. Biochem. Biophys. Res. Commun. 147, 1082-1087.
|
Raiber, E.A., Hardisty, R., van Delft, P., Balasubramanian, S., 2017. Mapping and elucidating the function of modified bases in DNA. Nat. Rev. Chem. 1, 0069.
|
Raju, S.K.K., Shao, M.R., Sanchez, R., Xu, Y.Z., Sandhu, A., Graef, G., Mackenzie, S., 2018. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol. J. 16, 1836-1847.
|
Regulski, M., Lu, Z.Y., Kendall, J., Donoghue, M.T.A., Reinders, J., Llaca, V., Deschamps, S., Smith, A., Levy, D., McCombie, W.R., et al., 2013. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 23, 1651-1662.
|
Rossi, V., Locatelli, S., Varotto, S., Donn, G., Pirona, R., Henderson, D.A., Hartings, H., Motto, M., 2007. Maize histone deacetylase hda101 is involved in plant development, gene transcription, and sequence-specific modulation of histone modification of genes and repeats. Plant Cell 19, 1145-1162.
|
Sallam, N., Moussa, M., 2021. DNA methylation changes stimulated by drought stress in ABA-deficient maize mutant. Plant Physiol. Bioch. 160, 218-224.
|
Sang, Y., Silva-Ortega, C.O., Wu, S., Yamaguchi, N., Wu, M.F., Pfluger, J., Gillmor, C.S., Gallagher, K.L., Wagner, D., 2012. Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects. Plant J. 72, 1000-1014.
|
Saze, H., Tsugane, K., Kanno, T., Nishimura, T., 2012. DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol. 53, 766-784.
|
Schmitz, R.J., He, Y., Valdes-Lopez, O., Khan, S.M., Joshi, T., Urich, M.A., Nery, J.R., Diers, B., Xu, D., Stacey, G., et al., 2013. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 23, 1663-1674.
|
Shang, J.Y., He, X.J., 2022. Chromatin-remodeling complexes: Conserved and plant-specific subunits in Arabidopsis. J. Integr. Plant Biol. 64, 499-515.
|
Shen, L., Liang, Z., Gu, X., Chen, Y., Teo, Z.W., Hou, X., Cai, W.M., Dedon, P.C., Liu, L., Yu, H., 2016. N(6)-Methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Dev. Cell 38, 186-200.
|
Shen, W.H., Xu, L., 2009. Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Mol. Plant 2, 600-609.
|
Shi, Z., Zhou, M.Y., Song, W., Liu, Y., Wang, R.H., Wang, Y.D., Zhang, R.Y., Zhao, J.R., Ren, W., 2023. Trash to treasure: lactate and protein lactylation in maize root impacts response to drought. Sci. China Life Sci. 66, 1903-1914.
|
Silveira, A.B., Trontin, C., Cortijo, S., Barau, J., Del Bem, L.E., Loudet, O., Colot, V., Vincentz, M., 2013. Extensive natural epigenetic variation at a de novo originated gene. PLoS Genet. 9, e1003437.
|
Steward, N., Kusano, T., Sano, H., 2000. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res. 28, 3250-3259.
|
Sun, Q., Hu, A., Mu, L., Zhao, H., Qin, Y., Gong, D., Qiu, F., 2022. Identification of a candidate gene underlying qHKW3, a QTL for hundred-kernel weight in maize. Theor. Appl. Genet. 135, 1579-1589.
|
Sun, X.P., Xiang, Y.L., Dou, N.N., Zhang, H., Pei, S.R., Franco, A.V., Menon, M., Monier, B., Ferebee, T., Liu, T., et al., 2023. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat. Biotechnol. 44, 120-127.
|
Tang, Q., Lv, H.Z., Li, Q.M., Zhang, X.Y., Li, L., Xu, J., Wu, F.K., Wang, Q.J., Feng, X.J., Lu, Y.L., 2022. Characteristics of microRNAs and target genes in maize root under drought stress. Int. J. Mol. Sci. 23, 4968.
|
Tang, Y., Gao, C.C., Gao, Y., Yang, Y., Shi, B., Yu, J.L., Lyu, C., Sun, B.F., Wang, H.L., Xu, Y., et al., 2020. OsNSUN2-mediated 5-Methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev. Cell 53, 272-286.e277.
|
Vanyushin, B.F., Tkacheva, S.G., Belozersky, A.N., 1970. Rare bases in animal DNA. Nature 225, 948-949.
|
Varotto, S., Locatelli, S., Canova, S., Pipal, A., Motto, M., Rossi, V., 2003. Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development. Plant Physiol. 133, 606-617.
|
Vercruyssen, L., Verkest, A., Gonzalez, N., Heyndrickx, K.S., Eeckhout, D., Han, S.K., Jegu, T., Archacki, R., Van Leene, J., Andriankaja, M., et al., 2014. ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development. Plant cell 26, 210-229.
|
Verkest, A., Byzova, M., Martens, C., Willems, P., Verwulgen, T., Slabbinck, B., Rombaut, D., Van de Velde, J., Vandepoele, K., Standaert, E., et al., 2015. Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. Plant Physiol. 168, 1338-1350.
|
Wang, C., Yang, Q., Wang, W.X., Li, Y.P., Guo, Y.L., Zhang, D.F., Ma, X.N., Song, W., Zhao, J.R., Xu, M.L., 2017. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New. Phytol. 215, 1503–1515.
|
Wang, F., Yu, Z., Zhang, M., Wang, M., Lu, X., Liu, X., Li, Y., Zhang, X., Tan, B.C., Li, C., et al., 2022. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnol. J. 20, 526-537.
|
Wang, G., Zhao, Y., Mao, W., Ma, X., Su, C., 2020. QTL analysis and fine mapping of a major QTL conferring kernel size in maize (Zea mays). Front. Genet. 11, 603920.
|
Wang, H., Ren, H., Zhang, L., Zhao, Y., Liu, Y., He, Q., Li, G., Han, K., Zhang, J., Zhao, B., et al., 2023. A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain. Agricultural Systems 204, 103541.
|
Wang, P., Zhao, L., Hou, H.L., Zhang, H., Huang, Y., Wang, Y.P., Li, H., Gao, F., Yan, S.H., Li, L.J., 2015. Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays. Plant Cell Physiol. 56, 965-976.
|
Wang, S., Xie, H., Mao, F., Wang, H., Wang, S., Chen, Z., Zhang, Y., Xu, Z., Xing, J., Cui, Z., et al., 2022. N(4)-acetyldeoxycytosine DNA modification marks euchromatin regions in Arabidopsis thaliana. Genome Biol. 23, 5.
|
Wang, S.L., Zhang, F., Jiang, P.F., Zhang, H., Zheng, H., Chen, R.H., Xu, Z.T., Ul Ikram, A., Li, E.N., Xu, Z.S., et al., 2021b. SDG128 is involved in maize leaf inclination. Plant J. 108, 1597-1608.
|
Wang, X., Elling, A.A., Li, X., Li, N., Peng, Z., He, G., Sun, H., Qi, Y., Liu, X.S., Deng, X.W., 2009. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant cell 21, 1053-1069.
|
Wang, X.L., Wang, H.W., Liu, S.X., Ferjani, A., Li, J.S., Yan, J.B., Yang, X.H., Qin, F., 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233-1241.
|
Wang, Y., Zhang, P., Guo, W., Liu, H., Li, X., Zhang, Q., Du, Z., Hu, G., Han, X., Pu, L., et al., 2021c. A deep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants. New Phytol. 232, 880-897.
|
Wang, Y.Y., Sheng, Y.L., Liu, Y.Q., Zhang, W.X., Cheng, T., Duan, L.L., Pan, B., Qiao, Y., Liu, Y.F., Gao, S., 2019. A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Res. 47, 11771-11789.
|
Xia, Z., Zhao, Z., Jiao, Z., Xu, T., Wu, Y., Zhou, T., Fan, Z., 2018. Virus-derived small interfering RNAs affect the accumulations of viral and host transcripts in maize. Viruses 10, 664.
|
Xiong, Y.Q., Mei, W.B., Kim, E.D., Mukherjee, K., Hassanein, H., Barbazuk, W.B., Sung, S., Kolaczkowski, B., Kang, B.H., 2014. Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members. BMC Plant Biol. 14, 204.
|
Xu, F., Kuo, T., Rosli, Y., Liu, M.S., Wu, L., Chen, L.O., Fletcher, J.C., Sung, Z.R., Pu, L., 2018. Trithorax group proteins act together with a polycomb group protein to maintain chromatin integrity for epigenetic silencing during seed germination in Arabidopsis. Mol. Plant 11, 659-677.
|
Xu, Q., Wu, L.M., Luo, Z.X., Zhang, M., Lai, J.S., Li, L., Springer, N.M., Li, Q., 2022. DNA demethylation affects imprinted gene expression in maize endosperm. Genome Biol. 23, 77.
|
Yang, F., Zhang, L., Li, J., Huang, J., Wen, R.Y., Ma, L., Zhou, D.F., Li, L.J., 2010. Trichostatin A and 5-azacytidine both cause an increase in global histone H4 acetylation and a decrease in global DNA and H3K9 methylation during mitosis in maize. BMC Plant Biol. 10.
|
Yang, L., Zhang, P., Wang, Y., Hu, G., Guo, W., Gu, X., Pu, L., 2022. Plant synthetic epigenomic engineering for crop improvement. Sci. China. Life Sci. 65, 2191-2204.
|
Yang, X., Yang, Y., Sun, B.F., Chen, Y.S., Xu, J.W., Lai, W.Y., Li, A., Wang, X., Bhattarai, D.P., Xiao, W., et al., 2017. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606-625.
|
Yang, X.D., Kundariya, H., Xu, Y.Z., Sandhu, A., Yu, J.T., Hutton, S.F., Zhang, M.F., Mackenzie, S.A., 2015. MutS HOMOLOG1-derived epigenetic breeding potential in Tomato. Plant Physiol. 168, 222-232.
|
Yu, J., Xu, F., Wei, Z., Zhang, X., Chen, T., Pu, L., 2020. Epigenomic landscape and epigenetic regulation in maize. Theor. Appl. Genet. 133, 1467-1489.
|
Yu, Q., Liu, S., Yu, L., Xiao, Y., Zhang, S.S., Wang, X.P., Xu, Y.Y., Yu, H., Li, Y.L., Yang, J.B., et al., 2021. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat. Biotechnol. 39, 1581-1588.
|
Yu, X.M., Jiang, L.L., Wu, R., Meng, X.C., Zhang, A., Li, N., Xia, Q., Qi, X., Pang, J.S., Xu, Z.Y., et al., 2016. The core subunit of a chromatin-remodeling complex, ZmCHB101, plays essential roles in maize growth and development. Sci. Rep. 6, 38504.
|
Yu, X.M., Meng, X.C., Liu, Y.T., Li, N., Zhang, A., Wang, T.J., Jiang, L.L., Pang, J.S., Zhao, X.X., Qi, X., et al., 2018. The chromatin remodeler ZmCHB101 impacts expression of osmotic stress-responsive genes in maize. Plant Mol. Biol. 97, 451-465.
|
Zaccara, S., Ries, R.J., Jaffrey, S.R., 2019. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Bio. 20, 608-624.
|
Zhang, B., Wang, Q., Pan, X., 2007. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol. 210, 279-289.
|
Zhang, D., Guo, W., Wang, T., Wang, Y., Le, L., Xu, F., Wu, Y., Wuriyanghan, H., Sung, Z.R., Pu, L., 2022a. RNA 5-Methylcytosine Modification regulates vegetative development associated with H3K27 trimethylation in Arabidopsis. Adv. Sci. 10, e2204885.
|
Zhang, F., Zhang, Y.C., Liao, J.Y., Yu, Y., Zhou, Y.F., Feng, Y.Z., Yang, Y.W., Lei, M.Q., Bai, M., Wu, H., et al., 2019a. The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genet. 15, e1008120.
|
Zhang, M., An, P., Li, H., Wang, X., Zhou, J., Dong, P., Zhao, Y., Wang, Q., Li, C., 2019b. The miRNA-mediated post-transcriptional regulation of maize in response to high temperature. Int. J. Mol. Sci. 20, 1754.
|
Zhang, M., Bodi, Z., Mackinnon, K., Zhong, S.L., Archer, N., Mongan, N.P., Simpson, G.G., Fray, R.G., 2022b. Two zinc finger proteins with functions in m6A writing interact with HAKAI. Nat. Commun. 13, 1127.
|
Zhang, M., Xie, S., Dong, X., Zhao, X., Zeng, B., Chen, J., Li, H., Yang, W., Zhao, H., Wang, G., et al., 2014a. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res. 24, 167-176.
|
Zhang, P., Wang, Y., Chachar, S., Tian, J., Gu, X., 2020. eRice: a refined epigenomic platform for japonica and indica rice. Plant Biotechnol. J. 18, 1642-1644.
|
Zhang, Q., Liang, Z., Cui, X., Ji, C., Li, Y., Zhang, P., Liu, J., Riaz, A., Yao, P., Liu, M., et al., 2018. N(6)-Methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression, plant development, and stress responses. Mol. Plant 11, 1492-1508.
|
Zhang, W., Han, Z., Guo, Q., Liu, Y., Zheng, Y., Wu, F., Jin, W., 2014b. Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 9, e98958.
|
Zhao, L.Y., Song, J., Liu, Y., Song, C.X., Yi, C., 2020. Mapping the epigenetic modifications of DNA and RNA. Protein & cell 11, 792-808.
|
Zhao, Y., Zhou, D.X., 2012. Epigenomic modification and epigenetic regulation in rice. J. Genet. Genomics 39, 307-315.
|
Zhao, Y.M., Su, C.F., 2019. Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize. Sci Rep. 9, 16112.
|
Zheng, Y.K., 2022. Molecular mechanisms of maize endosperm transfer cell development. Plant Cell Rep. 41, 1171-1180.
|
Zhong, S., Li, H., Bodi, Z., Button, J., Vespa, L., Herzog, M., Fray, R.G., 2008. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. The Plant cell 20, 1278-1288.
|
Zhou, D.X., 2009. Regulatory mechanism of histone epigenetic modifications in plants. Epigenetics 4, 15-18.
|
Zhou, L., Tian, S., Qin, G., 2019. RNA methylomes reveal the m(6)A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biol. 20, 156.
|
Zhu, M., Zhang, M., Xing, L., Li, W., Jiang, H., Wang, L., Xu, M., 2017. Transcriptomic analysis of long Non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development. Genes 8, 274.
|