8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 5
May  2024
Turn off MathJax
Article Contents

RCAN family member 3 deficiency contributes to noncompaction of the ventricular myocardium

doi: 10.1016/j.jgg.2023.12.010
Funds:

This study was supported by the National Key Research and Development Program of China (2022YFC2703302), the National Natural Science Foundation of China (82271692), the Sichuan Province Science and Technology Support Program, China (2022YFS0078), the Natural Science Foundation of Sichuan Province (2022NSFSC0782), the Fundamental Research Funds for the Central Universities (SCU2022F4080), and Horizontal research project of Sichuan University (21H1095 and 21H1116).

  • Received Date: 2023-12-28
  • Accepted Date: 2023-12-28
  • Available Online: 2025-06-06
  • Publish Date: 2024-01-03
  • Noncompaction of the ventricular myocardium (NVM), the third most diagnosed cardiomyopathy, is characterized by prominent trabeculae and intratrabecular recesses. However, the genetic etiology of 40%–60% of NVM cases remains unknown. Here, we identify two infants with NVM, in a nonconsanguineous family, with a typical clinical presentation of persistent bradycardia since the prenatal period. A homozygous missense variant (R223L) of RCAN family member 3 (RCAN3) is detected in both infants using whole-exome sequencing. In the zebrafish model, marked cardiac dysfunction is detected in rcan3 deficiency (MO-rcan3ATG-injected) and rcan-/- embryos. Developmental dysplasia of both endocardial and myocardial layers is also detected in rcan3-deficient embryos. RCAN3 R223L variant mRNAs can not rescue heart defects caused by rcan3 knockdown or knockout; however, hRCAN3 mRNAs rescue these phenotypes. RNA-seq experiments show that several genes involved in cardiomyopathies are significantly regulated through multiple signaling pathways in the rcan3-knockdown zebrafish model. In human cardiomyocytes, RCAN3 deficiency results in reduced proliferation and increased apoptosis, together with an abnormal mitochondrial ultrastructure. Thus, we suggest that RCAN3 is a susceptibility gene for cardiomyopathies, especially NVM and that the R223L mutation is a potential loss-of-function variant.
  • loading
  • Arbustini, E., Weidemann, F., Hall, J.L., 2014. Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J. Am. Coll. Cardiol. 64, 1840-1850.
    Bakkers, J., 2011. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91, 279-288.
    Blinder, J.J., Martinez, H.R., Craigen, W.J., Belmont, J., Pignatelli, R.H., Jefferies, J.L., 2011. Noncompaction of the left ventricular myocardium in a boy with a novel chromosome 8p23.1 deletion. Am. J. Med. Genet. A 155A, 2215-2220.
    Canaider, S., Facchin, F., Griffoni, C., Casadei, R., Vitale, L., Lenzi, L., Frabetti, F., D'Addabbo, P., Carinci, P., Zannotti, M., et al., 2006. Proteins encoded by human Down syndrome critical region gene 1-like 2 (DSCR1L2) mRNA and by a novel DSCR1L2 mRNA isoform interact with cardiac troponin I (TNNI3). Gene 372, 128-136.
    Choudhry, P., Trede, N.S., 2013. DiGeorge syndrome gene tbx1 functions through wnt11r to regulate heart looping and differentiation. PLoS One 8, e58145.
    Digilio, M.C., Bernardini, L., Gagliardi, M.G., Versacci, P., Baban, A., Capolino, R., Dentici, M.L., Roberti, M.C., Angioni, A., Novelli, A., et al., 2013. Syndromic non-compaction of the left ventricle: associated chromosomal anomalies. Clin. Genet. 84, 362-367.
    Elliott, P., Andersson, B., Arbustini, E., Bilinska, Z., Cecchi, F., Charron, P., Dubourg, O., Kuhl, U., Maisch, B., McKenna, W.J., et al., 2008. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart. J. 29, 270-276.
    Finsterer, J., Stollberger, C., Towbin, J.A., 2017. Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors. Nat. Rev. Cardiol. 14, 224-237.
    Halabi, R., Cechmanek, P.B., Hehr, C.L., McFarlane, S., 2022. Semaphorin3f as a cardiomyocyte derived regulator of heart chamber development. Cell Commun. Signal 20, 126.
    Hassel, D., Dahme, T., Erdmann, J., Meder, B., Huge, A., Stoll, M., Just, S., Hess, A., Ehlermann, P., Weichenhan, D., et al., 2009. Nexilin mutations destabilize cardiac Z-disks and lead to dilated cardiomyopathy. Nat. Med. 15, 1281-1288.
    Hawks, M.K., Paul, M.L.B., Malu, O.O., 2021. Sinus Node Dysfunction. Am. Fam. Physician 104, 179-185.
    Hussein, A., Karimianpour, A., Collier, P., Krasuski, R.A., 2015. Isolated noncompaction of the left ventricle in adults. J. Am. Coll. Cardiol. 66, 578-585.
    Ichida, F., Hamamichi, Y., Miyawaki, T., Ono, Y., Kamiya, T., Akagi, T., Hamada, H., Hirose, O., Isobe, T., Yamada, K., et al., 1999. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J. Am. Coll. Cardiol. 34, 233-240.
    Lee, S.K., Ahnn, J., 2020. Regulator of calcineurin (RCAN): beyond Down syndrome critical region. Mol. Cells 43, 671-685.
    Liu, M., Liao, H., Chen, Y., Lin, Z., Liu, Y., Zhang, X., Chan, H.C., Sun, H., 2019. Treatment of human T-cell acute lymphoblastic leukemia cells with CFTR inhibitor CFTRinh-172. Leuk. Res. 86, 106225.
    Maron, B.J., Towbin, J.A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D., Moss, A.J., Seidman, C.E., Young, J.B., 2006. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807-1816.
    Martinez-Hoeyer, S., Aranguren-Ibanez, A., Garcia-Garcia, J., Serrano-Candelas, E., Vilardell, J., Nunes, V., Aguado, F., Oliva, B., Itarte, E., Perez-Riba, M., 2013. Protein kinase CK2-dependent phosphorylation of the human Regulators of Calcineurin reveals a novel mechanism regulating the calcineurin-NFATc signaling pathway. Biochim. Biophys. Acta 1833, 2311-2321.
    Martinez-Hoeyer, S., Sole-Sanchez, S., Aguado, F., Martinez-Martinez, S., Serrano-Candelas, E., Hernandez, J.L., Iglesias, M., Redondo, J.M., Casanovas, O., Messeguer, R., et al., 2015. A novel role for an RCAN3-derived peptide as a tumor suppressor in breast cancer. Carcinogenesis 36, 792-799.
    Meijsen, J.J., Rammos, A., Campbell, A., Hayward, C., Porteous, D.J., Deary, I.J., Marioni, R.E., Nicodemus, K.K., 2019. Using tree-based methods for detection of gene-gene interactions in the presence of a polygenic signal: simulation study with application to educational attainment in the Generation Scotland Cohort Study. Bioinformatics 35, 181-188.
    Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., Steinegger, M., 2022. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679-682.
    Moric-Janiszewska, E., Markiewicz-Loskot, G., 2008. Genetic heterogeneity of left-ventricular noncompaction cardiomyopathy. Clin. Cardiol. 31, 201-204.
    Mulero, M.C., Aubareda, A., Schluter, A., Perez-Riba, M., 2007. RCAN3, a novel calcineurin inhibitor that down-regulates NFAT-dependent cytokine gene expression. Biochim. Biophys. Acta 1773, 330-341.
    Murphy, R.T., Thaman, R., Blanes, J.G., Ward, D., Sevdalis, E., Papra, E., Kiotsekoglou, A., Tome, M.T., Pellerin, D., McKenna, W.J., et al., 2005. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur. Heart J. 26, 187-192.
    Oechslin, E., Jenni, R., 2018. Left ventricular noncompaction: from physiologic remodeling to noncompaction cardiomyopathy. J. Am. Coll. Cardiol. 71, 723-726.
    Oechslin, E.N., Attenhofer Jost, C.H., Rojas, J.R., Kaufmann, P.A., Jenni, R., 2000. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J. Am. Coll. Cardiol. 36, 493-500.
    Ouyang, P., Saarel, E., Bai, Y., Luo, C., Lv, Q., Xu, Y., Wang, F., Fan, C., Younoszai, A., Chen, Q., et al., 2011. A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin. Chim. Acta 412, 170-175.
    Park, J.S., Jeong, J.H., Byun, J.K., Lim, M.A., Kim, E.K., Kim, S.M., Choi, S.Y., Park, S.H., Min, J.K., Cho, M.L., 2017. Regulator of calcineurin 3 ameliorates autoimmune arthritis by suppressing Th17 Cell differentiation. Am. J. Pathol. 187, 2034-2045.
    Peng, X., Li, G., Wang, Y., Zhuang, J., Luo, R., Chen, J., Chen, F., Shi, Y., Li, J., Zhou, Z., et al., 2016. CXXC5 is required for cardiac looping relating to TGFβ signaling pathway in zebrafish. Int. J. Cardiol. 214, 246-253.
    Postma, A.V., van Engelen, K., van de Meerakker, J., Rahman, T., Probst, S., Baars, M.J., Bauer, U., Pickardt, T., Sperling, S.R., Berger, F., et al., 2011. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ. Cardiovasc. Genet. 4, 43-50.
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., et al., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
    Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al., 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405-424.
    Risebro, C.A., Riley, P.R., 2006. Formation of the ventricles. ScientificWorld Journal 6, 1862-1880.
    Scaglia, F., Towbin, J.A., Craigen, W.J., Belmont, J.W., Smith, E.O., Neish, S.R., Ware, S.M., Hunter, J.V., Fernbach, S.D., Vladutiu, G.D., et al., 2004. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114, 925-931.
    Serrano-Candelas, E., Aleman-Muench, G., Sole-Sanchez, S., Aubareda, A., Martinez-Hoeyer, S., Adan, J., Aranguren-Ibanez, A, Pritchard, M.A., Soldevila, G., Perez-Riba, M., 2015. RCAN 1 and 3 proteins regulate thymic positive selection. Biochem. Biophys. Res. Commun. 460, 295-301.
    Shin, J.T., Fishman, M.C., 2002. From zebrafish to human: modular medical models. Annu. Rev. Genomics Hum. Genet. 3, 311-340.
    Strippoli, P., Lenzi, L., Petrini, M., Carinci, P., Zannotti, M., 2000. A new gene family including DSCR1 (Down Syndrome Candidate Region 1) and ZAKI-4: characterization from yeast to human and identification of DSCR1-like 2, a novel human member (DSCR1L2). Genomics 64, 252-263.
    Sun, H., Wang, Y., Zhang, J., Chen, Y., Liu, Y., Lin, Z., Liu, M., Sheng, K., Liao, H., Tsang, K.S., et al., 2018. CFTR mutation enhances Dishevelled degradation and results in impairment of Wnt-dependent hematopoiesis. Cell Death Dis. 9, 275.
    Thisse, C., Thisse, B., 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69.
    Towbin, J.A., 2010. Left ventricular noncompaction: a new form of heart failure. Heart Fail Clin. 6, 453-469.
    Towbin, J.A., Lorts, A., Jefferies, J.L., 2015. Left ventricular non-compaction cardiomyopathy. Lancet 386, 813-825.
    van Waning, J.I., Caliskan, K., Hoedemaekers, Y.M., van Spaendonck-Zwarts, K.Y., Baas, A.F., Boekholdt, S.M., van Melle, J.P., Teske, A.J., Asselbergs, F.W., Backx, A., et al., 2018. Genetics, clinical features, and long-term outcome of noncompaction cardiomyopathy. J. Am. Coll. Cardiol. 71, 711-722.
    Wang, X., Chow, F.L., Oka, T., Hao, L., Lopez-Campistrous, A., Kelly, S., Cooper, S., Odenbach, J., Finegan, B.A., Schulz, R., et al., 2009. Matrix metalloproteinase-7 and ADAM-12 (a disintegrin and metalloproteinase-12) define a signaling axis in agonist-induced hypertension and cardiac hypertrophy. Circulation 119, 2480-2489.
    Weiford, B.C., Subbarao, V.D., Mulhern, K.M., 2004. Noncompaction of the ventricular myocardium. Circulation 109, 2965-2971.
    Wu, R.S., Lam, II, Clay, H., Duong, D.N., Deo, R.C., Coughlin, S.R., 2018. A rapid method for directed gene knockout for screening in G0 zebrafish. Dev. Cell 46, 112-125.
    Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., et al., 2013. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 41, e141.
    Xiao, Y., Gao, M., Gao, L., Zhao, Y., Hong, Q., Li, Z., Yao, J., Cheng, H., Zhou, R., 2016. Directed differentiation of zebrafish pluripotent embryonic cells to functional cardiomyocytes. Stem Cell Reports 7, 370-382.
    Zhang, X.Y., Ma, H., Li, J., Lu, X.R., Li, J.Q., Yuan, N., Zhang, Z.L., Xue, X.Y., 2020. Functional implications of miR-145/RCAN3 axis in the progression of cervical cancer. Reprod. Biol. 20, 140-146.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return