8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 5
May  2024
Turn off MathJax
Article Contents

Pan-genome analysis reveals a highly plastic genome and extensive secreted protein polymorphism in Puccinia striiformis f. sp. tritici

doi: 10.1016/j.jgg.2023.12.004
Funds:

F University for providing computing resources. This work was supported by grants from the National Key Research and Development Program of China (2021YFD1401001), Shaanxi Province Postdoctoral Science Foundation (2023BSHEDZZ121), and the National “111 plan” of China (BP0719026).

F University and High-Performance Computing of State Key Laboratory of Crop Stress Biology for Arid Areas of Northwest A&

We thank Professor Yu Jiang for the assistance of the analyses in this study. We also thank Dr. Chongjing Xia for providing the virulence data of CYR34 on the Yr single-gene lines. We would like to acknowledge the High-Performance Computing of Northwest A&

  • Received Date: 2023-09-08
    Available Online: 2025-06-06
  • Publish Date: 2023-12-20
  • loading
  • Chen, X., Kang, Z. 2017. Stripe rust. Springer Netherlands.
    Chin, C., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C., O'Malley, R., Figueroa-Balderas, R., Morales-Cruz, A., et al., 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050-1054.
    Cuomo, C.A., Bakkeren, G., Khalil, H.B., Panwar, V., Joly, D., Linning, R., Sakthikumar, S., Song, X., Adiconis, X., Fan, L., et al., 2017. Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3 7, 361-376.
    Duan, H., Jones, A.W., Hewitt, T., Mackenzie, A., Hu, Y., Sharp, A., Lewis, D., Mago, R., Upadhyaya, N.M., Rathjen, J.P., et al., 2022. Physical separation of haplotypes in dikaryons allows benchmarking of phasing accuracy in Nanopore and HiFi assemblies with Hi-C data. Genome Biol. 23.
    Fouche, S., Plissonneau, C., Croll, D., 2018. The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Curr. Opin. Microbiol. 46, 34-42.
    Gao, X., Zhao, J., Liu, B., Guo, Y., Kang, Z., and Zhan, G. 2023. Population genetic analysis of Puccinia striiformis tritici in main winter-increasing areas based on virulent phenotypes and genotypes. Scientia Agricultura Sinica 56:2629-2642.
    Huang, J., Jia, Q.Z., Zhang, B., Sun, Z.Y., Huang, M.M., and Jin, S.L. 2018. Epidemic forecasting of the new strains G22-9 (CYR34) and G22-14 of Puccinia striiformis f. sp tritici in wheat in Gansu Province. Journal of Plant Protection 45:101-108.
    Li, H., Durbin, R., 2024. Genome assembly in the telomere-to-telomere era. Nat. Rev. Genet. https://doi.org/10.1038/s41576-024-00718-w.
    Li, Y., Xia, C., Wang, M., Yin, C., Chen, X., 2019. Genome sequence resource of a Puccinia striiformis isolate infecting wheatgrass. Phytopathology 109, 1509-1512.
    Schwessinger, B., 2016. Fundamental wheat stripe rust research in the 21st century. New Phytol. 213, 1625-1631.
    Schwessinger, B., Sperschneider, J., Cuddy, W.S., Garnica, D.P., Miller, M.E., Taylor, J.M., Dodds, P.N., Figuero, M., Park, R.F., Rathjen, J.P., 2018. A near-complete haplotype-phased genome of the dikaryotic wheat stripe rust fungus Puccinia striiformis f. sp. tritici reveals high interhaplotype diversity. mBio 9, e02275-17.
    Schwessinger, B., Jones, A., Albekaa, M., Hu, Y., Mackenzie, A., Tam, R., Nagar, R., Milgate, A., Rathjen, J.P., Periyannan, S., 2022. A chromosome scale assembly of an Australian Puccinia striiformis f. sp. tritici isolate of the PstS1 lineage. Mol. Plant-Microbe Interact. 35, 293-296.
    Schwessinger, B., Chen, Y., Tien, R., Vogt, J.K., Sperschneider, J., Nagar, R., McMullan, M., Sicheritz-Ponten, T., Soerensen, C.K., Hovmoeller, M.S., et al., 2020. Distinct life histories impact dikaryotic genome evolution in the rust fungus Puccinia striiformis causing stripe rust in wheat. Genome Biol. Evol. 12, 597-617.
    Toruno, T.Y., Stergiopoulos, I., Coaker, G., 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54, 419-441.
    Vasquez-Gross, H., Kaur, S., Epstein, L., Dubcovsky, J., 2020. A haplotype-phased genome of wheat stripe rust pathogen Puccinia striiformis f. sp. tritici, race PST-130 from the western USA. PLoS One 15, e0238611.
    Wang, J., Zhan, G., Tian, Y., Zhang, Y., Xu, Y., Kang, Z., Zhao, J., 2022. Role of sexual reproduction in the evolution of the wheat stripe rust fungus races in China. Phytopathology 112, 1063-1071.
    Xia, C., Huang, L., Huang, J., Zhang, H., Huang, Y., Benhamed, M., Wang, M., Chen, X., Zhang, M., Liu, T., et al., 2022. Folding features and dynamics of 3D genome architecture in plant fungal pathogens. Microbiol. Spectr. 10, e0260822.
    Zhao, J., Kang, Z., 2023. Fighting wheat rusts in China: a look back and into the future. Phytopathol. Res. 5, 1-30.
    Zhao, J., Wang, M., Chen, X., Kang, Z., 2016. Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annu. Rev. Phytopathol. 54, 207-228.
    Zheng, W., Huang, L., Huang, J., Wang, X., Chen, X., Zhao, J., Guo, J., Zhuang, H., Qiu, C., Liu, J., et al., 2013. High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus. Nat. Commun. 4, 2673.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return