8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 5
May  2024
Turn off MathJax
Article Contents

Knockdown of neuronal DAF-15/Raptor promotes healthy aging in C. elegans

doi: 10.1016/j.jgg.2023.11.002
Funds:

D Program of China (2021YFA0805802 to D. C.), and the National Natural Science Foundation of China (31971092 and 32171156 to D. C.). Some strains were provided by the Caenorhabditis Genetics Center (CGC), which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).

We thank Drs. Qian Bian, Mei Ding, Mengqiu Dong, Zhuo Du, Lingfeng Meng, Billy Qi, Ye Tian, Suhong Xu, and Wei Zou for reagents and discussions. This work was supported by grants from the National Key R&

  • Received Date: 2023-07-07
  • Accepted Date: 2023-11-06
  • Rev Recd Date: 2023-11-06
  • Available Online: 2025-06-06
  • Publish Date: 2023-11-10
  • The highly conserved target of rapamycin (TOR) pathway plays an important role in aging across species. Previous studies have established that inhibition of the TOR complex 1 (TORC1) significantly extends lifespan in Caenorhabditis elegans. However, it has not been clear whether TORC1 perturbation affects aging in a spatiotemporal manner. Here, we apply the auxin-inducible degradation tool to knock down endogenous DAF-15, the C. elegans ortholog of regulatory associated protein of TOR (Raptor), to characterize its roles in aging. Global or tissue-specific inhibition of DAF-15 during development results in various growth defects, whereas neuron-specific knockdown of DAF-15 during adulthood significantly extends lifespan and healthspan. The neuronal DAF-15 deficiency-induced longevity requires the intestinal activities of DAF-16/FOXO and PHA-4/FOXA transcription factors, as well as the AAK-2/AMP-activated protein kinase α catalytic subunit. Transcriptome profiling reveals that the neuronal DAF-15 knockdown promotes the expression of genes involved in protection. These findings define the tissue-specific roles of TORC1 in healthy aging and highlight the importance of neuronal modulation of aging.
  • loading
  • Albert, P.S., Riddle, D.L., 1988. Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev. Biol. 126, 270-293.
    Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169.
    Apfeld, J., Kenyon, C., 1998. Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95, 199-210.
    Apfeld, J., O'Connor, G., McDonagh, T., DiStefano, P.S., Curtis, R., 2004. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18, 3004-3009.
    Berman, J.R., Kenyon, C., 2006. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124, 1055-1068.
    Blackwell, T.K., Sewell, A.K., Wu, Z., Han, M., 2019. TOR signaling in Caenorhabditis elegans development, metabolism, and aging. Genetics 213, 329-360.
    Campisi, J., Kapahi, P., Lithgow, G.J., Melov, S., Newman, J.C., Verdin, E., 2019. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571, 183-192.
    Chen, D., Li, P.W., Goldstein, B.A., Cai, W., Thomas, E.L., Chen, F., Hubbard, A.E., Melov, S., Kapahi, P., 2013. Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep. 5, 1600-1610.
    Chen, D., Pan, K.Z., Palter, J.E., Kapahi, P., 2007. Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 6, 525-533.
    Chisholm, A.D., Xu, S., 2012. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. Wiley Interdiscip. Rev. Dev. Biol. 1, 879-902.
    Curran, S.P., Ruvkun, G., 2007. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 3, e56.
    Dillin, A., Hsu, A.L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A.G., Kamath, R.S., Ahringer, J., Kenyon, C., 2002. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398-2401.
    Dues, D.J., Andrews, E.K., Schaar, C.E., Bergsma, A.L., Senchuk, M.M., Van Raamsdonk, J.M., 2016. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging (Albany NY) 8, 777-795.
    Duong, T., Rasmussen, N.R., Ballato, E., Mote, F.S., Reiner, D.J., 2020. The Rheb-TORC1 signaling axis functions as a developmental checkpoint. Development 147, dev181727.
    Durieux, J., Wolff, S., Dillin, A., 2011. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79-91.
    Espelt, M.V., Estevez, A.Y., Yin, X., Strange, K., 2005. Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma. J. Gen. Physiol. 126, 379-392.
    Ewald, C.Y., Landis, J.N., Porter Abate, J., Murphy, C.T., Blackwell, T.K., 2015. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 519, 97-101.
    Feinberg, E.H., Hunter, C.P., 2003. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 1545-1547.
    Greer, E.L., Dowlatshahi, D., Banko, M.R., Villen, J., Hoang, K., Blanchard, D., Gygi, S.P., Brunet, A., 2007. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646-1656.
    Hansen, M., Chandra, A., Mitic, L.L., Onken, B., Driscoll, M., Kenyon, C., 2008. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24.
    Henderson, S.T., Johnson, T.E., 2001. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11, 1975-1980.
    Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M., Brown, P.A., Listner, K.M., Sakano, Y., Paupard, M.C., Hall, D.H., Driscoll, M., 2002. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814.
    Hills-Muckey, K., Martinez, M.A.Q., Stec, N., Hebbar, S., Saldanha, J., Medwig-Kinney, T.N., Moore, F.E.Q., Ivanova, M., Morao, A., Ward, J.D., et al., 2022. An engineered, orthogonal auxin analog/AtTIR1(F79G) pairing improves both specificity and efficacy of the auxin degradation system in Caenorhabditis elegans. Genetics 220, iyab174.
    Honjoh, S., Yamamoto, T., Uno, M., Nishida, E., 2009. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457, 726-730.
    Hsin, H., Kenyon, C., 1999. Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362-366.
    Jia, K., Chen, D., Riddle, D.L., 2004. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131, 3897-3906.
    Kaletsky, R., Murphy, C.T., 2010. The role of insulin/IGF-like signaling in C. elegans longevity and aging. Dis. Model. Mech. 3, 415-419.
    Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., Ahringer, J., 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002.
    Kapahi, P., Chen, D., Rogers, A.N., Katewa, S.D., Li, P.W., Thomas, E.L., Kockel, L., 2010. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453-465.
    Kapahi, P., Zid, B.M., Harper, T., Koslover, D., Sapin, V., Benzer, S., 2004. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885-890.
    Kenyon, C., Chang, J., Gensch, E., Rudner, A., Tabtiang, R., 1993. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464.
    Kenyon, C.J., 2010. The genetics of ageing. Nature 464, 504-512.
    Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L., 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36.
    Kimura, K.D., Tissenbaum, H.A., Liu, Y., Ruvkun, G., 1997. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942-946.
    Lan, J., Rollins, J.A., Zang, X., Wu, D., Zou, L., Wang, Z., Ye, C., Wu, Z., Kapahi, P., Rogers, A.N., et al., 2019. Translational regulation of non-autonomous mitochondrial stress response promotes longevity. Cell Rep. 28, 1050-1062 e1056.
    Laranjeiro, R., Harinath, G., Hewitt, J.E., Hartman, J.H., Royal, M.A., Meyer, J.N., Vanapalli, S.A., Driscoll, M., 2019. Swim exercise in Caenorhabditis elegans extends neuromuscular and gut healthspan, enhances learning ability, and protects against neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 116, 23829-23839.
    Lee, R.Y., Hench, J., Ruvkun, G., 2001. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr. Biol. 11, 1950-1957.
    Lee, S.S., Lee, R.Y., Fraser, A.G., Kamath, R.S., Ahringer, J., Ruvkun, G., 2003. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet. 33, 40-48.
    Li, W., Kennedy, S.G., Ruvkun, G., 2003. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev. 17, 844-858.
    Libina, N., Berman, J.R., Kenyon, C., 2003. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489-502.
    Lin, K., Dorman, J.B., Rodan, A., Kenyon, C., 1997. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319-1322.
    Lin, K., Hsin, H., Libina, N., Kenyon, C., 2001. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet. 28, 139-145.
    Lithgow, G.J., White, T.M., Melov, S., Johnson, T.E., 1995. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. U. S. A. 92, 7540-7544.
    Liu, J., Zhang, B., Lei, H., Feng, Z., Liu, J., Hsu, A.L., Xu, X.Z., 2013. Functional aging in the nervous system contributes to age-dependent motor activity decline in C. elegans. Cell Metab. 18, 392-402.
    Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
    Long, X., Spycher, C., Han, Z.S., Rose, A.M., Muller, F., Avruch, J., 2002. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr. Biol. 12, 1448-1461.
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
    McElwee, J.J., Schuster, E., Blanc, E., Thomas, J.H., Gems, D., 2004. Shared transcriptional signature in Caenorhabditis elegans dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J. Biol. Chem. 279, 44533-44543.
    McGhee, J.D., 2013. The Caenorhabditis elegans intestine. Wiley Interdiscip. Rev. Dev. Biol. 2, 347-367.
    Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., Levine, B., 2003. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-1391.
    Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., Kenyon, C., 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283.
    Ogg, S., Paradis, S., Gottlieb, S., Patterson, G.I., Lee, L., Tissenbaum, H.A., Ruvkun, G., 1997. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994-999.
    Pan, K.Z., Palter, J.E., Rogers, A.N., Olsen, A., Chen, D., Lithgow, G.J., Kapahi, P., 2007. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6, 111-119.
    Panowski, S.H., Wolff, S., Aguilaniu, H., Durieux, J., Dillin, A., 2007. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550-555.
    Qadota, H., Inoue, M., Hikita, T., Koppen, M., Hardin, J.D., Amano, M., Moerman, D.G., Kaibuchi, K., 2007. Establishment of a tissue-specific RNAi system in C. elegans. Gene 400, 166-173.
    Riddle, D.L., Albert, P.S., 1997. Genetic and Environmental Regulation of Dauer Larva Development, in: Riddle, D.L., Blumenthal, T., Meyer, B.J., Priess, J.R. (Eds.), C. elegans II. Cold Spring Harbor (NY).
    Robida-Stubbs, S., Glover-Cutter, K., Lamming, D.W., Mizunuma, M., Narasimhan, S.D., Neumann-Haefelin, E., Sabatini, D.M., Blackwell, T.K., 2012. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 15, 713-724.
    Saxton, R.A., Sabatini, D.M., 2017. mTOR Signaling in growth, metabolism, and disease. Cell 168, 960-976.
    Schwartz, M.L., Davis, M.W., Rich, M.S., Jorgensen, E.M., 2021. High-efficiency CRISPR gene editing in C. elegans using Cas9 integrated into the genome. PLoS Genet. 17, e1009755.
    Selman, C., Tullet, J.M., Wieser, D., Irvine, E., Lingard, S.J., Choudhury, A.I., Claret, M., Al-Qassab, H., Carmignac, D., Ramadani, F., et al., 2009. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140-144.
    Seo, K., Choi, E., Lee, D., Jeong, D.E., Jang, S.K., Lee, S.J., 2013. Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans. Aging Cell 12, 1073-1081.
    Sheaffer, K.L., Updike, D.L., Mango, S.E., 2008. The target of rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr. Biol. 18, 1355-1364.
    Smith, H.J., Lanjuin, A., Sharma, A., Prabhakar, A., Nowak, E., Stine, P.G., Sehgal, R., Stojanovski, K., Towbin, B.D., Mair, W.B., 2023. Neuronal mTORC1 inhibition promotes longevity without suppressing anabolic growth and reproduction in C. elegans. PLoS Genet. 19, e1010938.
    Soukas, A.A., Kane, E.A., Carr, C.E., Melo, J.A., Ruvkun, G., 2009. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev. 23, 496-511.
    Taylor, R.C., Dillin, A., 2013. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435-1447.
    Tian, Y., Garcia, G., Bian, Q., Steffen, K.K., Joe, L., Wolff, S., Meyer, B.J., Dillin, A., 2016. Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt). Cell 165, 1197-1208.
    Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L., 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515.
    Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., Muller, F., 2003. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426, 620.
    Wolkow, C.A., Kimura, K.D., Lee, M.S., Ruvkun, G., 2000. Regulation of C. elegans life-span by insulin-like signaling in the nervous system. Science 290, 147-150.
    Zhang, L., Ward, J.D., Cheng, Z., Dernburg, A.F., 2015. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142, 4374-4384.
    Zhang, Q., Wu, X., Chen, P., Liu, L., Xin, N., Tian, Y., Dillin, A., 2018. The mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling. Cell 174, 870-883 e817.
    Zhang, Y.P., Zhang, W.H., Zhang, P., Li, Q., Sun, Y., Wang, J.W., Zhang, S.O., Cai, T., Zhan, C., Dong, M.Q., 2022. Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat. Commun. 13, 6339.
    Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., Chanda, S.K., 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523.
    Zou, L., Wu, D., Zang, X., Wang, Z., Wu, Z., Chen, D., 2019. Construction of a germline-specific RNAi tool in C. elegans. Sci. Rep. 9, 2354.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return