8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 4
Apr.  2024
Turn off MathJax
Article Contents

Epigenetic and transcriptional landscapes during cerebral cortex development in a microcephaly mouse model

doi: 10.1016/j.jgg.2023.10.006
Funds:

We are grateful to Dr. Wen Zong for her contribution to the sample collection of Mcph1-del mice. This work was supported by the National Natural Science Foundation of China (81872299 to X.L. and 3217070538 to W.Z.Z.), Shenzhen Science and Technology Program (JCYJ20190807160011600 and JCYJ20210324124808023 to X.L.

JCYJ20200109142446804, JCYJ20220530145807018, ZDSYS20220606100803007, and JCYJ20190807154407467 to W.Z. Z.), Guangdong Provincial Key Laboratory of Digestive Cancer Research (2021B1212040006 to X.L.), and China Postdoctoral Science Foundation (2020M683073 to Y.Z.S.).

  • Received Date: 2023-07-17
  • Accepted Date: 2023-10-25
  • Rev Recd Date: 2023-10-24
  • Available Online: 2025-06-06
  • Publish Date: 2023-11-01
  • The cerebral cortex is a pivotal structure integral to advanced brain functions within the mammalian central nervous system. DNA methylation and hydroxymethylation play important roles in regulating cerebral cortex development. However, it remains unclear whether abnormal cerebral cortex development, such as microcephaly, could rescale the epigenetic landscape, potentially contributing to dysregulated gene expression during brain development. In this study, we characterize and compare the DNA methylome/hydroxymethylome and transcriptome profiles of the cerebral cortex across several developmental stages in wild-type (WT) mice and Mcph1 knockout (Mcph1-del) mice with severe microcephaly. Intriguingly, we discover a global reduction of 5′-hydroxymethylcytosine (5hmC) level, primarily in TET1-binding regions, in Mcph1-del mice compared to WT mice during juvenile and adult stages. Notably, genes exhibiting diminished 5hmC levels and concurrently decreased expression are essential for neurodevelopment and brain functions. Additionally, genes displaying a delayed accumulation of 5hmC in Mcph1-del mice are significantly associated with the establishment and maintenance of the nervous system during the adult stage. These findings reveal that aberrant cerebral cortex development in the early stages profoundly alters the epigenetic regulation program, which provides unique insights into the molecular mechanisms underpinning diseases related to cerebral cortex development.
  • loading
  • Adams, K.L., Riparini, G., Banerjee, P., Breur, M., Bugiani, M., Gallo, V., 2020. Endothelin-1 signaling maintains glial progenitor proliferation in the postnatal subventricular zone. Nat. Commun. 11, 2138.
    Al-Mahdawi, S., Virmouni, S.A., Pook, M.A., 2014. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases. Front. Neurosci. 8, 397.
    Akalin, A., Kormaksson, M., Li, S., Garrett-Bakelman, F.E., Figueroa, M.E., Melnick, A., Mason, C. E., 2012. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, 1-9.
    Antony, D., Becker-Heck, A., Zariwala, M.A., Schmidts, M., Onoufriadis, A., Forouhan, M., Wilson, R., Taylor-Cox, T., Dewar, A., Jackson, C., et al., 2013. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum. Mutat. 34, 462-472.
    Boonsawat, P., Joset, P., Steindl, K., Oneda, B., Gogoll, L., Azzarello-Burri, S., Sheth, F., Datar, C., Verma, I.C., Puri, R.D., et al., 2019. Elucidation of the phenotypic spectrum and genetic landscape in primary and secondary microcephaly. Genet. Med. 21, 2043-2058.
    Bradley-Whitman, M.A., Lovell, M.A., 2013. Epigenetic changes in the progression of Alzheimer's disease. Mech. Ageing Dev. 134, 486-495.
    Campbell, C.E., Piper, M., Plachez, C., Yeh, Y.T., Baizer, J.S., Osinski, J.M., Litwack, E.D., Richards, L.J., Gronostajski, R.M., 2008. The transcription factor Nfix is essential for normal brain development. BMC Dev. Biol. 8, 52.
    Coppieters, N., Dieriks, B.V., Lill, C., Faull, R.L.M., Curtis, M.A., Dragunow, M., 2014. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol. Aging 35, 1334-1344.
    Damian, J.P., Vazquez Alberdi, L., Canclini, L., Rosso, G., Bravo, S.O., Martinez, M., Uriarte, N., Ruiz, P., Calero, M., Tomaso, M.V.D., et al., 2021. Central alteration in peripheral neuropathy of Trembler-J mice: hippocampal pmp22 expression and behavioral profile in anxiety tests. Biomolecules 11, 601.
    El Ghaleb, Y., Schneeberger, P. E., Fernandez-Quintero, M. L., Geisler, S. M., Pelizzari, S., Polstra, A. M., Hagen, J. M., Denecke, J., Campiglio, M., Liedl, K. R., et al., 2021. CACNA1I gain-of-function mutations differentially affect channel gating and cause neurodevelopmental disorders. Brain 144, 2092-2106.
    Ghafouri-Fard, S., Fardaei, M., Gholami, M., Miryounesi, M., 2015. A case report: autosomal recessive microcephaly caused by a novel mutation in MCPH1 gene. Gene 571, 149-150.
    Gruber, R., Zhou, Z., Sukchev, M., Joerss, T., Frappart, P.O., Wang, Z.Q., 2011. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat. Cell Biol. 13, 1325-1334.
    Gu, T., Lin, X., Cullen, S.M., Luo, M., Jeong, M., Estecio, M., Shen, J., Hardikar, S., Sun, D., Su, J., et al., 2018. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 19, 1-15.
    Guo, J.U., Ma, D.K., Mo, H., Ball, M.P., Jang, M.H., Bonaguidi, M.A., Balazer, J.A., Eaves, H.L., Xie, B., Ford E., et al., 2011a. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci. 14, 1345-1351.
    Guo, J.U., Su, Y., Zhong, C., Ming, G.L., Song, H., 2011b. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423-434.
    Han, Q., Kono, T.J.Y., Knutson, C.G., Parry, N.M., Seiler, C.L., Fox, J.G., Tannenbaum, S.R., Tretyakova, N.Y., 2021. Multi-omics characterization of inflammatory bowel disease-induced hyperplasia/dysplasia in the Rag2-/-/Il10-/- mouse model. Int. J. Mol. Sci. 22, 364.
    Henderson, J.T., Georgiou, J., Jia, Z., Robertson, J., Elowe, S., Roder, J.C., Pawson, T., 2001. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041-1056.
    Jiang, J., Chan, Y.S., Loh, Y.H., Cai, J., Tong, G.Q., Lim, C.A., Robson, P., Zhong, S., Ng, H.H., 2008. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 10, 353-360.
    Jin, S.G., Zhang, Z.M., Dunwell, T.L., Harter, M.R., Wu, X., Johnson, J., Li, Z., Liu, J., Szabo, P.E., Lu, Q., et al., 2016. Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep. 14, 493-505.
    Jobe, E.M., McQuate, A.L., Zhao, X., 2012. Crosstalk among epigenetic pathways regulates neurogenesis. Front. Neurosci. 6, 59.
    Joo, Y., Xue, Y., Wang, Y., McDevitt, R.A., Sah, N., Bossi, S., Su, S., Lee, S.K., Peng, W., Xie, A., et al., 2020. Topoisomerase 3β knockout mice show transcriptional and behavioural impairments associated with neurogenesis and synaptic plasticity. Nat. Commun. 11, 3143.
    Kopparapu, P.K., Miranda, C., Fogelstrand, L., Mishra, K., Andersson, P.O., Kanduri, C., Kanduri, M., 2015. MCPH1 maintains long-term epigenetic silencing of ANGPT2 in chronic lymphocytic leukemia. FEBS J. 282, 1939-1952.
    Kristofova, M., Ori, A., Wang, Z.Q., 2022. Multifaceted microcephaly-related gene MCPH1. Cells 11, 275.
    Krueger, F., Andrews, S.R., 2011. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformation. 27, 1571-1572.
    Li, X., Liu, Y., Salz, T., Hansen, K. D., Feinberg, A., 2016. Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver. Genome Res. 26, 1730-1741.
    Lin, I.H., Chen, Y.F., Hsu, M.T., 2017. Correlated 5-hydroxymethylcytosine (5hmC) and gene expression profiles underpin gene and organ-specific epigenetic regulation in adult mouse brain and liver. PLoS One 12. e0170779.
    Lister, R., Mukamel, E.A., Nery, J.R., Urich, M., Puddifoot, C.A., Johnson, N.D., Lucero, J., Huang, Y., Dwork, A.J., Schultz, M.D., et al., 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905.
    Liu, X., Zong, W., Li, T., Wang, Y., Xu, X., Zhou, Z.W., Wang, Z.Q., 2017. The E3 ubiquitin ligase APC/CCdh1 degrades MCPH1 after MCPH1-βTrCP2-Cdc25A-mediated mitotic entry to ensure neurogenesis. EMBO J. 36, 3666-3681.
    Memi, F., Killen, A.C., Barber, M., Parnavelas, J.G., Andrews, W.D., 2019. Cadherin 8 regulates proliferation of cortical interneuron progenitors. Brain Struct. Funct. 224, 277-292.
    Mohammad, H.P., Barbash, O., Creasy, C.L., 2019. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med. 25, 403-418.
    Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., Daley, G.Q., 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141-146.
    Peng, G., Yim, E.K., Dai, H., Jackson, A.P., Burgt, I. van der, Pan, M.R., Hu, R., Li, K., Lin, S.Y., 2009. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat. Cell Biol. 11, 865-872.
    Proschel, C., Hansen, J.N., Ali, A., Tuttle, E., Lacagnina, M., Buscaglia, G., Paciorkowski, A.R., 2017. Epilepsy-causing sequence variations in SIK1 disrupt synaptic activity response gene expression and affect neuronal morphology. Eur. J. Hum. Genet. 25, 216-221.
    Qu, Q., Sun, G., Murai, K., Ye, P., Li, W., Asuelime, G., Cheung, Y.T., Shi, Y., 2013. Wnt7a regulates multiple steps of neurogenesis. Mol. Cell Biol. 33, 2551-2559.
    Rasmussen, K.D., Berest, I., Kebler, S., Nishimura, K., Simon-Carrasco, L., Vassiliou, G.S., Pedersen, M.T., Christensen, J., Zaugg, J.B., Helin, K., 2019. TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells. Genome Res. 29, 564-575.
    Reissner, C., Stahn, J., Breuer, D., Klose, M., Pohlentz, G., Mormann, M., Missler, M., 2014. Dystroglycan binding to α-neurexin competes with neurexophilin-1 and neuroligin in the brain. J. Biol. Chem. 289, 27585-27603.
    Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
    Rybnikova, E., Karkkainen, I., Pelto-Huikko, M., Huovila, A.P.J., 2002. Developmental regulation and neuronal expression of the cellular disintegrin ADAM11 gene in mouse nervous system. Neuroscience 112, 921-934.
    Sansom, S.N., Livesey, F.J., 2009. Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harbor Perspect. Biol. 1, a002519.
    Serrano, M., Hannon, G.J., Beach, D., 1993. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704-707.
    Siegfried, Z., Simon, I., 2010. DNA methylation and gene expression. WIREs Syst. Biol. Med. 2, 362-371.
    Skvortsova, K., Iovino, N., Bogdanovic, O., 2018. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol. 19, 774-790.
    Soule, J., Messaoudi, E., Bramham, C.R., 2006. Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem. Soc. Trans. 34, 600-604.
    Spiers, H., Hannon, E., Schalkwyk, L.C., Bray, N.J., Mill, J., 2017. 5-hydroxymethylcytosine is highly dynamic across human fetal brain development. BMC Genom. 18, 1-14.
    Wang, F., Yang, Y., Lin, X., Wang, J.Q., Wu, Y.S., Xie, W., Wang, D., Zhu, S., Liao, Y.Q., Sun, Q., et al., 2013. Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington's disease. Hum. Mol. Genet. 22, 3641-3653.
    Winkler, C.W., Clancy, C.S., Rosenke, R., Peterson, K.E., 2022. Zika virus vertical transmission in interferon receptor1-antagonized Rag1-/- mice results in postnatal brain abnormalities and clinical disease. Acta. Neuropathol. Com. 10, 46.
    Xu, Y., Wu, F., Tan, L., Kong, L., Xiong, L., Deng, J., Barbera, A.J., Zheng, L., Zhang, H., Huang, S., et al., 2011. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451-464.
    Yamane, M., Ohtsuka, S., Matsuura, K., Nakamura, A., Niwa, H., 2018. Overlapping functions of Kruppel-like factor family members: targeting multiple transcription factors to maintain the naive pluripotency of mouse embryonic stem cells. Development 145, dev162404.
    Yu, G., Wang, L.G., Han, Y., He, Q.Y., 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 16, 284-287.
    Zeiss, C.J., 2021. Comparative milestones in rodent and human postnatal central nervous system development. Toxicol. Pathol. 49, 1368-1373.
    Zhang, L., Li, Q., Wang, H., Wu, Y., Ye, X., Gong, Z., Li, Q., Xuan, A., 2022. Gadd45g, a novel antidepressant target, mediates metformin-induced neuronal differentiation of neural stem cells via DNA demethylation. Stem Cell. 40, 59-73.
    Zhang, X., Huang, C.T., Chen, J., Pankratz, M.T., Xi, J., Li, J., Yang, Y., LaVaute, T.M., Li, X., Ayala, M., et al., 2010a. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7, 90-100.
    Zhang, Y., Jurkowska, R., Soeroes, S., Rajavelu, A., Dhayalan, A., Bock, I., Rathert, P., Brandt, O., Reinhardt, R., Fischle, W., et al., 2010b. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38, 4246-4253.
    Zhang, Y., Zhang, Y., Chen, D., Wang, C., Chen, L., Gao, C., Fan, W., Shi, J., Zhang, J., Li, B., 2019. Genome-wide alteration of 5-hydroxymethylcytosine in hypoxic-ischemic neonatal rat model of cerebral palsy. Front. Mol. Neurosci. 12, 214.
    Zito, A., Cartelli, D., Cappelletti, G., Cariboni, A., Andrews, W., Parnavelas, J., Poletti, A., Galbiati, M., 2014. Neuritin 1 promotes neuronal migration. Brain Struct. Funct. 219, 105-118.
    Zullo, K.M., Douglas, B., Maloney, N.M., Ji, Y., Wei, Y., Herbine, K., Cohen, R., Pastore, C., Cramer, Z., Wang, X., et al., 2021. LINGO3 regulates mucosal tissue regeneration and promotes TFF2 dependent recovery from colitis. Scand. J. Gastroenterol. 56, 791-805.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return