8.2
CiteScore
6.6
Impact Factor
Volume 51 Issue 5
May  2024
Turn off MathJax
Article Contents

Two diversities meet in the rhizosphere: root specialized metabolites and microbiome

doi: 10.1016/j.jgg.2023.10.004
Funds:

This work was financially supported by National Key Research and Development Program of China (2018YFA0900603 to G.W. and 2022YFF1001800 to Y.B.), the National Natural Science Foundation of China (grant No. 32000232) to X.W., and the State Key Laboratory of Plant Genomics of China (SKLPG2016A-13) to G.W.

  • Received Date: 2023-06-15
  • Accepted Date: 2023-10-15
  • Rev Recd Date: 2023-10-15
  • Available Online: 2025-06-06
  • Publish Date: 2023-10-23
  • Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
  • loading
  • Alonso-Ramirez, A., Poveda, J., Martin, I., Hermosa, R., Monte, E., Nicolas, C., 2014. Salicylic acid prevents trichoderma harzianum from entering the vascular system of roots. Mol. Plant Pathol. 15, 823-831.
    Auge, R.M., 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3-42.
    Bai, Y., Muller, D.B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski, N., Munch, P.C., Spaepen, S., Remus-Emsermann, M., et al., 2015. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364-369.
    Banerjee, S.,van der Heijden, M.G.A., 2023. Soil microbiomes and one health. Nat. Rev. Microbiol. 21, 6-20.
    Bardgett, R.D.,van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505-511.
    Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., et al., 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323, 101-106.
    Bennett, A.E., Grussu, D., Kam, J., Caul, S., Halpin, C., 2014. Plant lignin content altered by soil microbial community. New Phytol. 206, 166-174.
    Bennett, A.E., Macrae, A.M., Moore, B.D., Caul, S., Johnson, S.N., 2013. Early root herbivory impairs arbuscular mycorrhizal fungal colonization and shifts defence allocation in establishing plantago lanceolata. PLoS One 8, e66053.
    Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478-486.
    Berendsen, R.L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W.P., Burmolle, M., Herschend, J., Bakker, P.A.H.M., Pieterse, C.M.J., 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 12, 1496-1507.
    Boachon, B., Burdloff, Y., Ruan, J.X., Rojo, R., Junker, R.R., Vincent, B., Nicole, F., Bringel, F., Lesot, A., Henry, L., et al., 2019. A promiscuous CYP706A3 reduces terpene volatile emission from Arabidopsis flowers, affecting florivores and the floral microbiome. Plant Cell 31, 2947-2972.
    Boutanaev, A.M., Moses, T., Zi, J., Nelson, D.R., Mugford, S.T., Peters, R.J.,Osbourn, A., 2015. Investigation of terpene diversification across multiple sequenced plant genomes. Proc. Natl. Acad. Sci. U. S. A. 112, E81-88.
    Bressan, M., Roncato, M.A., Bellvert, F., Comte, G., Haichar, F.E., Achouak, W., Berge, O., 2009. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 3, 1243-1257.
    Brown, P.D., Tokuhisa, J.G., Reichelt, M., Gershenzon, J., 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62, 471-481.
    Campillo, T., Renoud, S., Kerzaon, I., Vial, L., Baude, J., Gaillard, V., Bellvert, F., Chamignon, C., Comte, G., Nesme, X., et al., 2014. Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway. Appl Environ Microbiol, 80, 3341-3349.
    Carrero-Carron, I., Rubio, M.B., Nino-Sanchez, J., Navas-Cortes, J.A., Jimenez-Diaz, R.M., Monte, E.,Hermosa, R., 2018. Interactions between Trichoderma harzianum and defoliating Verticillium dahliae in resistant and susceptible wild olive clones. Plant Pathol. 67, 1758-1767.
    Castillo, D.A., Kolesnikova, M.D., Matsuda, S.P.T., 2013. An effective strategy for exploring unknown metabolic pathways by genome mining. J. Am. Chem. Soc. 135, 5885-5894.
    Cesco, S., Neumann, G., Tomasi, N., Pinton, R., Weisskopf, L., 2010. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329, 1-25.
    Chen, M., Bruisson, S., Bapaume, L., Darbon, G., Glauser, G., Schorderet, M., Reinhardt, D., 2021a. Vapyrin attenuates defence by repressing pr gene induction and localized lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. New Phytol. 229, 3481-3496.
    Chen, Q., Jiang, T., Liu, Y.X., Liu, H., Zhao, T., Liu, Z., Gan, X., Hallab, A., Wang, X., He, J., et al., 2019. Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci. China Life Sci. 62, 947-958.
    Chen, Q., Li, J., Liu, Z., Mitsuhashi, T., Zhang, Y., Liu, H., Ma, Y., He, J., Shinada, T., Sato, T., et al., 2020. Molecular basis for sesterterpene diversity produced by plant terpene synthases. Plant Commun. 1, 100051.
    Chen, Q., Li, J., Ma, Y., Yuan, W., Zhang, P., Wang, G., 2021b. Occurrence and biosynthesis of plant sesterterpenes (C25), a new addition to terpene diversity. Plant Commun. 2, 100184.
    Claude, E., Jones, E.A., Pringle, S.D. 2017. DESI mass spectrometry imaging (MSI), in: Cole, L.M. (Eds.), Imaging mass spectrometry : Methods and protocols. Springer New York, New York, NY, pp. 65-75.
    Cotton, T.E.A., Petriacq, P., Cameron, D.D., Meselmani, M.A., Schwarzenbacher, R., Rolfe, S.A., Ton, J., 2019. Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J. 13, 1647-1658.
    Dean, R., Van Kan, J.A.L., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J., et al., 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414-430.
    Denarie, J., Cullimore, J., 1993. Lipo-oligosaccharide nodulation factors - a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell 74, 951-954.
    Dixon, R., Kahn, D., 2004. Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2, 621-631.
    Dixon, R.A., Steele, C.L., 1999. Flavonoids and isoflavonoids- a gold mine for metabolic engineering. Trends Plant Sci. 4, 394-400.
    Fahey, J.W., Zalcmann, A.T., Talalay, P., 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5-51.
    Farre-Armengol, G., Filella, I., Llusia, J., Penuelas, J., 2016. Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions. Trends Plant Sci. 21, 854-860.
    Fazio, G.C., Xu, R., Matsuda, S.P.T., 2004. Genome mining to identify new plant triterpenoids. J. Am. Chem. Soc. 126, 5678-5679.
    Fourcroy, P., Siso-Terraza, P., Sudre, D., Saviron, M., Reyt, G., Gaymard, F., Abadia, A., Abadia, J., Alvarez-Fernandez, A., Briat, J.F., 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 201, 155-167.
    Fujii, T., Matsuda, S., Tejedor, M.L., Esaki, T., Sakane, I., Mizuno, H., Tsuyama, N., Masujima, T., 2015. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat. Protoc. 10, 1445-1456.
    Fujimatsu, T., Endo, K., Yazaki, K., Sugiyama, A., 2020. Secretion dynamics of soyasaponins in soybean roots and effects to modify the bacterial composition. Plant Direct 4, 1-12.
    Garrido-Oter, R., Nakano, R.T., Dombrowski, N., Ma, K.W., AgBiome, T., McHardy, A.C., Schulze-Lefert, P., 2018. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24, 155-167 e155.
    Genre, A., Lanfranco, L., Perotto, S., Bonfante, P., 2020. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18, 649-660.
    Glensk, M., Gajda, B., Franiczek, R., Krzyzanowska, B., Biskup, I., Wlodarczyk, M., 2016. In vitro evaluation of the antioxidant and antimicrobial activity of DIMBOA [2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one]. Nat. Prod. Res. 30, 1305-1308.
    Groenhagen, U., Maczka, M., Dickschat, J.S., Schulz, S., 2014. Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5. Beilstein J. Org. Chem. 10, 1421-1432.
    Haichar, F.E., Santaella, C., Heulin, T., Achouak, W., 2014. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69-80.
    Harbort, C.J., Hashimoto, M., Inoue, H., Niu, Y., Guan, R., Rombola, A.D., Kopriva, S., Voges, M., Sattely, E.S., Garrido-Oter, R., et al., 2020. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825-837.
    Harman, G.E., Doni, F., Khadka, R.B., Uphoff, N., 2021. Endophytic strains of Trichoderma increase plants' photosynthetic capability. J. Appl. Microbiol. 130, 529-546.
    Hartwig, U.A.,Phillips, D.A., 1991. Release and modification of nod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol. 95, 804-807.
    Haughn, G.W., Davin, L., Giblin, M., Underhill, E.W., 1991. Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana: The glucosinolates. Plant Physiol. 97, 217-226.
    Hawes, M.C., Brigham, L.A., Wen, F., Woo, H.H., Zhu, Y., 1998. Function of root border cells in plant health: Pioneers in the rhizosphere. Annu. Rev. Phytopathol. 36, 311-327.
    He, D., Singh, S.K., Peng, L., Kaushal, R., Vilchez, J.I., Shao, C., Wu, X., Zheng, S., Morcillo, R.J.L., Pare, P.W., et al., 2022. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME J. 16, 2622-2632.
    Hill, R.A., Connolly, J.D., 2012. Triterpenoids. Nat. Prod. Rep. 29, 780-818.
    Hoeksema, J.D., Chaudhary, V.B., Gehring, C.A., Johnson, N.C., Karst, J., Koide, R.T., Pringle, A., Zabinski, C., Bever, J.D., Moore, J.C., et al., 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394-407.
    Huang, A.C., Kautsar, S.A., Hong, Y.J., Medema, M.H., Bond, A.D., Tantillo, D.J., Osbourn, A., 2017. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc. Natl. Acad. Sci. U. S. A. 114, E6005-E6014.
    Huang, A.C., Jiang, T., Liu, Y.X., Bai, Y.C., Reed, J., Qu, B.Y., Goossens, A., Nutzmann, H.W., Bai, Y., Osbourn, A., 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364, eaau6389.
    Jacoby, R.P., Koprivova, A., Kopriva, S., 2021. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. J. Exp. Bot. 72, 57-69.
    Jacoby, R.P., Martyn, A., Kopriva, S., 2018. Exometabolomic profiling of bacterial strains as cultivated using Arabidopsis root extract as the sole carbon source. Mol. Plant Microbe. Interact. 31, 803-813.
    Jiang, Y.N., Wang, W.X., Xie, Q.J., Liu, N., Liu, L.X., Wang, D.P., Zhang, X.W., Yang, C., Chen, X.Y., Tang, D.Z., et al., 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356, 1172-1175.
    Jimenez, J.I., Canales, A., Jimenez-Barbero, J., Ginalski, K., Rychlewski, L., Garcia, J.L., Diaz, E., 2008. Deciphering the genetic determinants for aerobic nicotinic acid degradation: The nic cluster from Pseudomonas putida KT2440. Proc. Natl. Acad. Sci. U. S. A. 105, 11329-11334.
    Johnson, N.C., Graham, J.H., Smith, F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135, 575-586.
    Kai, K., Mizutani, M., Kawamura, N., Yamamoto, R., Tamai, M., Yamaguchi, H., Sakata, K., Shimizu, B., 2008. Scopoletin is biosynthesized viaortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J. 55, 989-999.
    Kaiser, J.P., Feng, Y., Bollag, J.M., 1996. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol. Rev. 60, 483-498.
    Katoh, A., Uenohara, K., Akita, M., Hashimoto, T., 2006. Early steps in the biosynthesis of nad in Arabidopsis start with aspartate and occur in the plastid. Plant Physiol. 141, 851-857.
    Kim, B., Westerhuis, J.A., Smilde, A.K., Flokova, K., Suleiman, A.K.A., Kuramae, E.E., Bouwmeester, H.J., Zancarini, A., 2022. Effect of strigolactones on recruitment of the rice root-associated microbiome. FEMS Microbiol. Ecol. 98, 1-12.
    Kirkegaard, J.A., Sarwar, M., 1998. Biofumigation potential of brassicas. Plant Soil 201, 71-89.
    Kodama, K., Rich, M.K., Yoda, A., Shimazaki, S., Xie, X.N., Akiyama, K., Mizuno, Y., Komatsu, A., Luo, Y., Suzuki, H., et al., 2022. An ancestral function of strigolactones as symbiotic rhizosphere signals. Nat. Commun. 13, 3974.
    Koprivova, A., Schuck, S., Jacoby, R.P., Klinkhammer, I., Welter, B., Leson, L., Martyn, A., Nauen, J., Grabenhorst, N., Mandelkow, J.F., et al., 2019. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc. Natl. Acad. Sci. U. S. A. 116, 15735-15744.
    Korenblum, E., Aharoni, A., 2019. Phytobiome metabolism: Beneficial soil microbes steer crop plants' secondary metabolism. Pest Manag. Sci. 75, 2378-2384.
    Korenblum, E., Dong, Y., Szymanski, J., Panda, S., Jozwiak, A., Massalha, H., Meir, S., Rogachev, I., Aharoni, A., 2020. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc. Natl. Acad. Sci. U. S. A. 117, 3874-3883.
    Kudjordjie, E.N., Sapkota, R., Steffensen, S.K., Fomsgaard, I.S., Nicolaisen, M., 2019. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 7, 59.
    Lebeis, S.L., Paredes, S.H., Lundberg, D.S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., del Rio, T.G., Jones, C.D., Tringe, S.G., et al., 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860-864.
    Lee, J.H., Lee, J., 2010. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34, 426-444.
    Lee, S., Yap, M., Behringer, G., Hung, R., Bennett, J.W., 2016. Volatile organic compounds emitted by trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3, 7.
    Li, K., Gustafson, K.R., 2021. Sesterterpenoids: Chemistry, biology, and biosynthesis. Nat. Prod. Rep. 38, 1251-1281.
    Li, W., Zhang, F.X., Chang, Y.W., Zhao, T., Schranz, M.E., Wang, G.D., 2015. Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana. Plant Cell 27, 1907-1924.
    Li, W., Zhang, F.X., Wu, R.R., Jia, L.J., Li, G.S., Guo, Y.L., Liu, C.M., Wang, G.D., 2017. A novel N-methyltransferase in Arabidopsis appears to feed a conserved pathway for nicotinate detoxification among land plants and is associated with lignin biosynthesis. Plant Physiol. 174, 1492-1504.
    Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., et al., 2005. Pre- and post-invasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180-1183.
    Liu, F., Rice, J.H., Lopes, V., Grewal, P., Lebeis, S.L., Hewezi, T., Staton, M.E., 2020. Overexpression of strigolactone-associated genes exerts fine-tuning selection on soybean rhizosphere bacterial and fungal microbiome. Phytobiomes J. 4, 239-251.
    Liu, L., Zhang, F., Li, G., Wang, G., 2019. Qualitative and quantitative NAD+ metabolomics lead to discovery of multiple functional nicotinate N-glycosyltransferase in Arabidopsis. Front. Plant Sci. 10, 1164.
    Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H., Radhakrishnan, G.V., Breakspear, A., Oldroyd, G.E.D., Eastmond, P.J., 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175-1178.
    Luo, L., Zhao, C.Z., Wang, E.T., Raza, A., Yin, C.Y., 2022. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiol. Res. 259, 127016.
    Mafu, S., Ding, Y., Murphy, K.M., Yaacoobi, O., Addison, J.B., Wang, Q., Shen, Z., Briggs, S.P., Bohlmann, J., Castro-Falcon, G., et al., 2018. Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize. Plant Physiol. 176, 2677-2690.
    Mahapatra, S., Yadav, R., Ramakrishna, W., 2022. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. 132, 3543-3562.
    Malmierca, M.G., Cardoza, R.E., Alexander, N.J., McCormick, S.P., Hermosa, R., Monte, E., Gutierrez, S., 2012. Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl. Environ. Microbiol. 78, 4856-4868.
    Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S.V., Machado, M.A., et al., 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13, 614-629.
    Matsuda, H., Nakayasu, M., Aoki, Y., Yamazaki, S., Nagano, A.J., Yazaki, K., Sugiyama, A., 2020. Diurnal metabolic regulation of isoflavones and soyasaponins in soybean roots. Plant Direct 4, e00286.
    Mendes, R., Garbeva, P., Raaijmakers, J.M., 2013. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634-663.
    Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., Ausubel, F.M., 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22, 973-990.
    Mohamed, G.A., Ibrahim, S.R.M., Abdelkader, M.S.A., Al-Musayeib, N.M., Ghoneim, M., Ross, S.A., 2014. Zeaoxazolinone, a new antifungal agent from Zea mays roots. Med.Chem. Res. 23, 4627-4630.
    Morlacchi, P., Wilson, W.K., Xiong, Q., Bhaduri, A., Sttivend, D., Kolesnikova, M.D., Matsuda, S.P.T., 2009. Product profile of PEN3: The last unexamined oxidosqualene cyclase in Arabidopsis thaliana. Org. Lett. 11, 2627-2630.
    Murphy, K.M., Edwards, J., Louie, K.B., Bowen, B.P., Sundaresan, V., Northen, T.R., Zerbe, P., 2021. Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (Zea mays). Sci. Rep. 11, 333.
    Nakayasu, M., Ohno, K., Takamatsu, K., Aoki, Y., Yamazaki, S., Takase, H., Shoji, T., Yazaki, K., Sugiyama, A., 2021. Tomato roots secrete tomatine to modulate the bacterial assemblage of the rhizosphere. Plant Physiol. 186, 270-284.
    Nakayasu, M., Takamatsu, K., Kanai, K., Masuda, S., Yamazaki, S., Aoki, Y., Shibata, A., Suda, W., Shirasu, K., Yazaki, K., et al., 2023. Tomato root-associated Sphingobium harbors genes for catabolizing toxic steroidal glycoalkaloids. mBio, e00599-23.
    Narasimhan, K., Basheer, C., Bajic, V.B., Swarup, S., 2003. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol. 132, 146-153.
    Nasir, F., Li, W., Tran, L.P., Tian, C., 2020. Does karrikin signaling shape the rhizomicrobiome via the strigolactone biosynthetic pathway? Trends Plant Sci. 25, 1184-1187.
    Nasir, F., Shi, S., Tian, L., Chang, C., Ma, L., Li, X., Gao, Y., Tian, C., 2019. Strigolactones shape the rhizomicrobiome in rice (Oryza sativa). Plant Sci. 286, 118-133.
    Nawrath, T., Gerth, K., Muller, R., Schulz, S., 2010. The biosynthesis of the aroma volatile 2-methyltetrahydrothiophen-3-one in the bacterium Chitinophaga FX7914. ChemBioChem 11, 1914-1919.
    Noritaka, A., Tomohisa, S., Wataru, Y., Tomoaki, S., Masaru, N., Akinori, A., Shigenobu, K., Jun, O., Sachiko, M., Arisa, S., et al., 2023. Discovery of an isoflavone oxidative catabolic pathway in legume root microbiota. bioRxiv, DOI: 10.1001/08.07.552369.
    Okutani, F., Hamamoto, S., Aoki, Y., Nakayasu, M., Nihei, N., Nishimura, T., Yazaki, K., Sugiyama, A., 2020. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ. 43, 1036-1046.
    Peters, N.K., Frost, J.W., Long, S.R., 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233, 977-980.
    Petersen, B.L., Chen, S., Hansen, C.H., Olsen, C.E., Halkier, B.A., 2002. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta 214, 562-571.
    Petriacq, P., Williams, A., Cotton, A., McFarlane, A.E., Rolfe, S.A., Ton, J., 2017. Metabolite profiling of non-sterile rhizosphere soil. Plant J. 92, 147-162.
    Pozo, M.J., Azcon-Aguilar, C., 2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393-398.
    Rajniak, J., Giehl, R.F.H., Chang, E., Murgia, I., von Wiren, N., Sattely, E.S., 2018. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14, 442-450.
    Reichelt, M., Brown, P.D., Schneider, B., Oldham, N.J., Stauber, E., Tokuhisa, J., Kliebenstein, D.J., Mitchell-Olds, T., Gershenzon, J., 2002. Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59, 663-671.
    Rolfe, S.A., Griffiths, J., Ton, J., 2019. Crying out for help with root exudates: Adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 49, 73-82.
    Rosa, E.A.S., 1997. Daily variation in glucosinolate concentrations in the leaves and roots of cabbage seedlings in two constant temperature regimes. J. Sci. Food Agric. 73, 364-368.
    Rubio, M.B., Quijada, N.M., Perez, E., Dominguez, S., Monte, E., Hermosa, R., 2014. Identifying beneficial qualities of Trichoderma parareesei for plants. Appl. Environ. Microbiol. 80, 1864-1873.
    Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., Fernie, A.R., 2013. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiol. Biochem. 72, 21-34.
    Salas-Gonzalez, I., Reyt, G., Flis, P., Custodio, V., Gopaulchan, D., Bakhoum, N., Dew, T.P., Suresh, K., Franke, R.B., Dangl, J.L., et al., 2021. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371, eabd0695.
    Sasse, J., Martinoia, E., Northen, T., 2018. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci. 23, 25-41.
    Schmid, N.B., Giehl, R.F., Doll, S., Mock, H.P., Strehmel, N., Scheel, D., Kong, X., Hider, R.C., von Wiren, N., 2014. Feruloyl-CoA 6'-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol. 164, 160-172.
    Schulz-Bohm, K., Gerards, S., Hundscheid, M., Melenhorst, J., de Boer, W., Garbeva, P., 2018. Calling from distance: Attraction of soil bacteria by plant root volatiles. ISME J. 12, 1252-1262.
    Shao, J., Chen, Q., Lv, H., He, J., Liu, Z., Lu, Y., Liu, H., Wang, G., Wang, Y., 2017. (+)-Thalianatriene and (-)-retigeranin B catalyzed by sesterterpene synthases from Arabidopsis thaliana. Org. Lett. 19, 1816-1819.
    Shimura, K., Okada, A., Okada, K., Jikumaru, Y., Ko, K.W., Toyomasu, T., Sassa, T., Hasegawa, M., Kodama, O., Shibuya, N., et al., 2007. Identification of a biosynthetic gene cluster in rice for momilactones. J. Biol. Chem. 282, 34013-34018.
    Shirley, H.J., Jamieson, M.L., Brimble, M.A., Bray, C.D., 2018. A new family of sesterterpenoids isolated around the Pacific Rim. Nat. Prod. Rep. 35, 210-219.
    Shtark, O.Y., Shishova, M.F., Povydysh, M.N., Avdeeva, G.S., Zhukov, V.A., Tikhonovich, I.A., 2018. Strigolactones as regulators of symbiotrophy of plants and microorganisms. Russ. J. Plant Physiol. 65, 151-167.
    Siso-Terraza, P., Luis-Villarroya, A., Fourcroy, P., Briat, J.F., Abadia, A., Gaymard, F., Abadia, J., Alvarez-Fernandez, A., 2016. Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH. Front. Plant Sci. 7, 1711.
    Siwinska, J., Siatkowska, K., Olry, A., Grosjean, J., Hehn, A., Bourgaud, F., Meharg, A.A., Carey, M., Lojkowska, E., Ihnatowicz, A., 2018. Scopoletin 8-hydroxylase: A novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. J. Exp. Bot. 69, 1735-1748.
    Song, X.Y., Shen, Q.T., Xie, S.T., Chen, X.L., Sun, C.Y., Zhang, Y.Z., 2006. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol. Lett. 260, 119-125.
    Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R., Schuhmacher, R., 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J.Microbiol. Meth. 81, 187-193.
    Strehmel, N., Bottcher, C., Schmidt, S., Scheel, D., 2014. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108, 35-46.
    Subramanian, S., Stacey, G., Yu, O., 2007. Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci. 12, 282-285.
    Swenson, T.L., Karaoz, U., Swenson, J.M., Bowen, B.P., Northen, T.R., 2018. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 19.
    Szoboszlay, M., White-Monsant, A., Moe, L.A., 2016. The effect of root exudate 7,4'-dihydroxyflavone and naringenin on soil bacterial community structure. PLoS One 11, e0146555.
    Thimmappa, R., Geisler, K., Louveau, T., O'Maille, P.,Osbourn, A., 2014. Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 65, 225-257.
    Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T.M., Singh, B.K., 2020. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 18, 607-621.
    Tsai, H.H., Rodriguez-Celma, J., Lan, P., Wu, Y.C., Velez-Bermudez, I.C., Schmidt, W., 2018. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiol. 177, 194-207.
    Tyc, O., Song, C., Dickschat, J.S., Vos, M., Garbeva, P., 2017. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25, 280-292.
    Tzipilevich, E., Russ, D., Dangl, J.L., Benfey, P.N., 2021. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe 29, 1507-1520.
    van der Heijden, M.G.A., Martin, F.M., Selosse, M.A., Sanders, I.R., 2015. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 205, 1406-1423.
    Vanholme, R., Sundin, L., Seetso, K.C., Kim, H., Liu, X., Li, J., De Meester, B., Hoengenaert, L., Goeminne, G., Morreel, K., et al., 2019. COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nat. Plants 5, 1066-1075.
    Vinale, F., Marra, R., Scala, F., Ghisalberti, E.L., Lorito, M., Sivasithamparam, K., 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43, 143-148.
    Vives-Peris, V., de Ollas, C., Gomez-Cadenas, A., Perez-Clemente, R.M., 2020. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3-17.
    Vogel, C.M., Potthoff, D.B., Schafer, M., Barandun, N., Vorholt, J.A., 2021. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat. Microbiol. 6, 1537-1548.
    Voges, M., Bai, Y., Schulze-Lefert, P., Sattely, E.S., 2019. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl. Acad. Sci. U. S. A. 116, 12558-12565.
    Wang, G., Pichersky, E., 2007. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J. 49, 1020-1029.
    Wang, P., Lopes, L.D., Lopez-Guerrero, M.G., van Dijk, K., Alvarez, S., Riethoven, J.J., Schachtman, D.P., 2022a. Natural variation in root exudation of GABA and DIMBOA impacts the maize root endosphere and rhizosphere microbiomes. J. Exp. Bot. 73, 5052-5066.
    Wang, X.Y., Liang, C., Mao, J.D., Jiang, Y.J., Bian, Q., Liang, Y.T., Chen, Y., Sun, B., 2023. Microbial keystone taxa drive succession of plant residue chemistry. ISME J. 17, 748-757.
    Wang, Y., Pruitt, R.N., Nurnberger, T., Wang, Y.C., 2022b. Evasion of plant immunity by microbial pathogens. Nat. Rev. Microbiol. 20, 449-464.
    Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M., Thomashow, L.S., 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40, 309-348.
    Winkel-Shirley, B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485-493.
    Wolinska, K.W., Vannier, N., Thiergart, T., Pickel, B., Gremmen, S., Piasecka, A., Pislewska-Bednarek, M., Nakano, R.T., Belkhadir, Y., Bednarek, P., et al., 2021. Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. Proc. Natl. Acad. Sci. U. S. A. 118, e2111521.
    Woo, S.L., Hermosa, R., Lorito, M., Monte, E., 2023. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 21, 312-326.
    Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., Lorito, M., 2014. Trichoderma-based products and their widespread use in agriculture. Open Mycology J. 8, 71-126.
    Wu, R., Zhang, F., Liu, L., Li, W., Pichersky, E., Wang, G., 2018. MeNA, controlled by reversible methylation of nicotinate, is an nad precursor that undergoes long-distance transport in Arabidopsis. Mol. Plant 11, 1264-1277.
    Xiang, T., Shibuya, M., Katsube, Y., Tsutsumi, T., Otsuka, M., Zhang, H., Masuda, K., Ebizuka, Y., 2006. A new triterpene synthase from Arabidopsis thaliana produces a tricyclic triterpene with two hydroxyl groups. Org. Lett. 8, 2835-2838.
    Xiong, Q., Wilson, W.K., Matsuda, S.P.T., 2006. An Arabidopsis oxidosqualene cyclase catalyzes iridal skeleton formation by Grob fragmentation. Angew. Chem. Int. Ed. Engl. 45, 1285-1288.
    Xu, D., Hanschen, F.S., Witzel, K., Nintemann, S.J., Nour-Eldin, H.H., Schreiner, M., Halkier, B.A., 2017. Rhizosecretion of stele-synthesized glucosinolates and their catabolites requires GTR-mediated import in Arabidopsis. J. Exp. Bot. 68, 3205-3214.
    Xu, R., Fazio, G.C., Matsuda, S.P.T., 2004. On the origins of triterpenoid skeletal diversity. Phytochemistry 65, 261-291.
    Yamada, Y., Kuzuyama, T., Komatsu, M., Shin-Ya, K., Omura, S., Cane, D.E., Ikeda, H., 2015. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. U. S. A. 112, 857-862.
    Yan, D., Tajima, H., Cline, L.C., Fong, R.Y., Ottaviani, J.I., Shapiro, H.Y., Blumwald, E., 2022. Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. Plant Biotechnol. J. 20, 2135-2148.
    Yang, J., Lan, L.Y., Jin, Y., Yu, N., Wang, D., Wang, E., 2022. Mechanisms underlying legume-rhizobium symbioses. J. Integr. Plant Biol. 64, 244-267.
    Yu, P., He, X., Baer, M., Beirinckx, S., Tian, T., Moya, Y.A.T., Zhang, X., Deichmann, M., Frey, F.P., Bresgen, V., et al., 2021. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 7, 481-499.
    Zhang, J., Liu, Y.X., Zhang, N., Hu, B., Jin, T., Xu, H., Qin, Y., Yan, P., Zhang, X., Guo, X., et al., 2019. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676-684.
    Zhang, Z., Shao, L., Chang, L., Cao, Y., Zhang, T., Wang, Y., Liu, Y., Zhang, P., Sun, X., Wu, Y., et al., 2016. Effect of rhizobia symbiosis on lignin levels and forage quality in alfalfa (Medicago sativa l.). Agric. Ecosyst. Environ. 233, 55-59.
    Zhao, M., Zhao, J., Yuan, J., Hale, L., Wen, T., Huang, Q., Vivanco, J.M., Zhou, J., Kowalchuk, G.A., Shen, Q., 2021. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant Cell Environ. 44, 613-628.
    Zhong, Y., Xun, W.B., Wang, X.H., Tian, S.W., Zhang, Y.C., Li, D.W., Zhou, Y., Qin, Y.X., Zhang, B., Zhao, G.W., et al., 2022. Root-secreted bitter triterpene modulates the rhizosphere microbiota to improve plant fitness. Nat. Plants 8, 887-896.
    Zhou, X., Zhang, J., Khashi, U.R.M., Gao, D., Wei, Z., Wu, F., Dini-Andreote, F., 2023. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Mol. Plant 5, 849-864.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return