Alvarez, J.P., Furumizu, C., Efroni, I., Eshed, Y., Bowman, J.L., 2016. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife. 5.
|
Atwell, S., Huang, Y.S,, Vilhjalmsson, B.J., Willems, G., Horton, M., Li, Y., Meng, D., Platt, A., Tarone, A.M., Hu, T.T., et al., 2010. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature. 465, 627-631.
|
Baird, A.S., Taylor, S.H., Pasquet-Kok, J., Vuong, C., Zhang, Y., Watcharamongkol, T., Scoffoni, C., Edwards, E.J., Christin, P.A., Osborne, C.P., et al., 2021. Developmental and biophysical determinants of grass leaf size worldwide. Nature. 592, 242-247.
|
Ballester, P., Navarrete-Gomez, M., Carbonero, P., Onate-Sanchez, L., Ferrandiz, C., 2015. Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. Physiol. Plant. 155, 21-32.
|
Bechtold, U., Penfold, C.A., Jenkins, D.J., Legaie, R., Moore, J.D., Lawson, T., Matthews, J.S., Vialet-Chabrand, S.R., Baxter, L., Subramaniam, S., et al., 2016. Time-series transcriptomics reveals that AGAMOUS-LIKE22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. Plant Cell. 28, 345-366.
|
Beltramino, M., Ercoli, M.F., Debernardi, J.M., Goldy, C., Rojas, A.M.L., Nota, F., Alvarez, M.E., Vercruyssen, L., Inze, D., Palatnik, J.F., et al., 2018. Robust increase of leaf size by Arabidopsis thaliana GRF3-like transcription factors under different growth conditions. Sci. Rep. 8, 13447.
|
Bentsink, L., Jowett, J., Hanhart, C.J., Koornneef, M., 2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 103, 17042-17047.
|
Bowler, C., Benvenuto, G., Laflamme, P., Molino, D., Probst, A.V., Tariq, M., Paszkowski, J., 2004. Chromatin techniques for plant cells. Plant J. 39, 776-789.
|
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y., 2020. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62, 25-54.
|
Chen, X., Zhang, Z., Liu, D., Zhang, K., Li, A., Mao, L., 2010. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J. Integr. Plant Biol. 52, 946-951.
|
Cheon, J., Park, S.Y., Schulz, B., Choe, S., 2010 Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC Plant Biol. 10, 270.
|
Chiang GC, Barua D, Kramer EM, Amasino RM, Donohue K., 2009. Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 106(28), 11661-11666.
|
Cho, H.J., Kim, J.J., Lee, J.H., Kim, W., Jung, J.-H., Park, C.-M., Ahn, J.H., 2012. SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis. FEBS Lett. 586, 2332-2337.
|
Clauw, P., Coppens, F., Korte, A., Herman, D., Slabbinck, B., Dhondt, S., Van Daele, T., De Milde, L., Vermeersch, M., Maleux, K., et al., 2016. Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. Plant Cell. 28, 2417-2434.
|
Clough, S.J., Bent, A.F., 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
|
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., 2011. 1000 genomes project analysis group. The variant call format and VCFtools. Bioinformatics. 27, 2156-2158.
|
Dong, H., Dumenil, J., Lu, F.H., Na, L., Vanhaeren, H., Naumann, C., Klecker, M., Prior, R., Smith, C., McKenzie, N., et al., 2017. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes Dev. 31, 197-208.
|
Fisher, R. A., 1930. The Genetical Theory of Natural Selection. Clarendon Press. Oxford.
|
Fusari, C. M. et al., 2017. Genome-wide association mapping reveals that specific and pleiotropic regulatory mechanisms fine-tune central metabolism and growth in Arabidopsis. Plant Cell. 29, 2349-2373.
|
Gaut, B., 2012. Arabidopsis thaliana as a model for the genetics of local adaptation. Nat. Genet. 44, 115-116.
|
Gegas, V.C., Wargent, J.J., Pesquet, E., Granqvist, E., Paul, N.D., Doonan, J.H., 2014. Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. J. Exp. Bot. 65, 2757-2766.
|
Hanemian, M., Vasseur, F., Marchadier, E., Gilbault, E., Bresson, J., Gy, I., Violle, C., Loudet, O., 2020. Natural variation at FLM splicing has pleiotropic effects modulating ecological strategies in Arabidopsis thaliana. Nat. Commun. 11, 4140.
|
He, Z., Zeng, J., Ren, Y., Chen, D., Li, W., Gao, F., Cao, Y., Luo, T., Yuan, G., Wu, X., et al., 2017. OsGIF1 positively regulates the sizes of stems, leaves, and grains in rice. Front. Plant Sci. 8, 1730.
|
Hort, A., 1948. Enquiry into plants, Vol. vol. I, by Theophrastus. Harvard Univ. Press.
|
Huo H, Wei S, Bradford KJ., 2016. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc. Natl. Acad. Sci. U. S. A. 113, E2199-E2206.
|
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution 35, 1547.
|
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., Nambara, E., 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23, 1647-1656.
|
Lantzouni, O., Alkofer, A., Falter-Braun, P., Schwechheimer, C., 2020. GROWTH-REGULATING FACTORS interact with DELLAs and regulate growth in cold stress. Plant Cell. 32, 1018-1034.
|
Lee, K.H., Piao, H.L., Kim, H.Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I.J., Hwang, I., 2006. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell. 126, 1109-1120.
|
Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C.A., Ito, T., Meyerowitz, E., Yu, H., 2008a. A repressor complex governs the integration of flowering signals in Arabidopsis. Dev. Cell. 15, 110-120.
|
Li, N., Liu, Z., Wang, Z., Ru, L., Gonzalez, N., Baekelandt, A., Pauwels, L., Goossens, A., Xu, R., Zhu, Z., et al., 2018. STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genet. 14, e1007218.
|
Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., et al., 2017. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell. 170, 114-126.
|
Li, Y., Zheng, L., Corke, F., Smith, C., Bevan, M.W., 2008b. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev. 22, 1331-1336.
|
Liu, X., Sun, Z., Dong, W., Wang, Z., Zhang, L., 2018. Expansion and functional divergence of the SHORT VEGETATIVE PHASE (SVP) genes in Eudicots. Genome Biol. Evol. 10, 3026-3037.
|
., 2022 Lou, S., Guo, X., Liu, L., Song, Y., Zhang, L., Jiang, Y., Zhang, L., Sun, P., Liu, B., Tong, S., 2022. Allelic shift in cis-elements of the transcription factor RAP2. 12 underlies adaptation associated with humidity in Arabidopsis thaliana. Sci. Adv. 8, eabn8281.
|
Mendez-Vigo, B., Martinez-Zapater, J.M., Alonso-Blanco, C., 2013. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background. PLoS Genet. 9, e1003289.
|
Mitchum, M.G., Yamaguchi, S., Hanada, A., Kuwahara, A., Yoshioka, Y., Kato, T., Tabata, S., Kamiya, Y., Sun, T.P., 2006. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. : for cell and molecular biology. 45, 804-818.
|
Novikova, P.Y., Hohmann, N., Nizhynska, V., Tsuchimatsu, T., Ali, J., Muir, G., Guggisberg, A., Paape, T., Schmid, K., Fedorenko, O.M., 2016. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat. Genet. 48, 1077-1082.
|
O'Maoileidigh, D.S., van Driel, A.D., Singh, A., Sang, Q., Le Bec, N., Vincent, C., de Olalla, E.B.G., Vayssieres, A., Romera Branchat, M., Severing, E., 2021. Systematic analyses of the MIR172 family members of Arabidopsis define their distinct roles in regulation of APETALA2 during floral transition. PLoS Biol. 19, e3001043.
|
Ogura, T., Goeschl, C., Filiault, D., Mirea, M., Slovak, R., Wolhrab, B., Satbhai, S.B., Busch, W., 2019. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell. 178, 400-412.
|
Okamoto, M., Tanaka, Y., Abrams, S.R., Kamiya, Y., Seki, M., Nambara, E., 2009. High humidity induces abscisic acid 8'-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol. 149, 825-834.
|
Orr, H.A., 2000. Adaptation and the cost of complexity. Evolution. 54, 13-20.
|
Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., Weigel, D., 2003. Control of leaf morphogenesis by microRNAs. Nature. 425, 257-263.
|
Reich, P.B., 2014. The world-wide ‘fast-slow’plant economics spectrum: a traits manifesto. J. Ecol. 102, 275-301.
|
Saini, K., Markakis, M.N., Zdanio, M., Balcerowicz, D.M., Beeckman, T., De Veylder, L., Prinsen, E., Beemster, G.T.S., Vissenberg, K., 2017. Alteration in auxin homeostasis and signaling by overexpression of PINOID kinase causes leaf growth defects in Arabidopsis thaliana. Front. Plant Sci. 8, 1009.
|
Sartori, K., Vasseur, F., Violle, C., Baron, E., Gerard, M., Rowe, N., Ayala-Garay, O., Christophe, A., Jalon, L.G.d., Masclef, D., 2019. Leaf economics and slow-fast adaptation across the geographic range of Arabidopsis thaliana. Sci. Rep. 9, 1-12.
|
Shimano, S., Hibara, K.I., Furuya, T., Arimura, S.I., Tsukaya, H., Itoh, J.I., 2018. Conserved functional control, but distinct regulation, of cell proliferation in rice and Arabidopsis leaves revealed by comparative analysis of GRF-INTERACTING FACTOR 1 orthologs. Development. vol. 145.
|
Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.Y., Hsing, Y.I., Kitano, H., Yamaguchi, I., et al., 2005. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature. 437, 693-698.
|
Wagner, G.P., Kenney-Hunt, J.P., Pavlicev, M., Peck, J.R., Waxman, D., Cheverud, J.M., 2008. Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature. 452, 470-472.
|
Wang, H., Kong, F., Zhou, C., 2021. From genes to networks: the genetic control of leaf development. J. Integr. Plant Biol. 63, 1181-1196.
|
Wang, Z., Li, N., Jiang, S., Gonzalez, N., Huang, X., Wang, Y., Inze, D., Li, Y., 2016a. SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat. Commun. 7, 11192.
|
Wang, Z., Liao, B.-Y. & Zhang, J., 2010. Genomic patterns of pleiotropy and the volution of complexity. Proc. Natl. Acad. Sci. U. S. A. 107, 18034-18039.
|
Wang, Z., Su, G., Li, M., Ke, Q., Kim, S.Y., Li, H., Huang, J., Xu, B., Deng, X.P., Kwak, S.S., 2016b. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiol. Biochem. : PPB. 109, 199-208.
|
Wang, Z., Wang, F., Hong, Y., Yao, J., Ren, Z., Shi, H., Zhu, J.-K., 2018. The flowering repressor SVP confers drought resistance in Arabidopsis by regulating abscisic acid catabolism. Mol. Plant. 11, 1184-1197.
|
Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Diaz, S., Gallagher, R.V., Jacobs, B.F., Kooyman, R., Law, E.A., et al., 2017. Global climatic drivers of leaf size. Science. 357, 917-921.
|
Xia, T., Li, N., Dumenil, J., Li, J., Kamenski, A., Bevan, M.W., Gao, F., Li, Y., 2013. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell. 25, 3347-3359.
|
Xu, Z.Y., Lee, K.H., Dong, T., Jeong, J.C., Jin, J.B., Kanno, Y., Kim, D.H., Kim, S.Y., Seo, M., Bressan, R.A., et al., 2012. A vacuolar beta-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell. 24, 2184-2199.
|
Yu, S., Galvao, V.C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., Feng, Y.-Q., Wang, S., Schmid, M., Wang, J.-W., 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors. Plant Cell. 24, 3320-3332.
|
Zou, Y.P., Hou, X.H., Wu, Q., Chen, J.F., Li, Z.W., Han, T.S., Niu, X.M., Yang, L., Xu, Y.C., Zhang, J., et al., 2017. Adaptation of Arabidopsis thaliana to the Yangtze River basin. Genome Biol. 18, 239.
|