5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 9
Sep.  2023
Turn off MathJax
Article Contents

Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network

doi: 10.1016/j.jgg.2023.06.005 cstr: 32370.14.j.jgg.2023.06.005
Funds:

The authors wish to thank Tiantian Guo, Yan Pan, and Wenbo Guo for their discussions and suggestions

Feng Bao for the technical support. This work was supported by National Natural Science Foundation of China (62003028). X.L. was supported by a Scholarship from the China Scholarship Council.

  • Received Date: 2023-02-14
  • Accepted Date: 2023-06-16
  • Rev Recd Date: 2023-06-15
  • Publish Date: 2023-06-23
  • Recent advances in spatially resolved transcriptomic technologies have enabled unprecedented opportunities to elucidate tissue architecture and function in situ. Spatial transcriptomics can provide multimodal and complementary information simultaneously, including gene expression profiles, spatial locations, and histology images. However, most existing methods have limitations in efficiently utilizing spatial information and matched high-resolution histology images. To fully leverage the multi-modal information, we propose a SPAtially embedded Deep Attentional graph Clustering (SpaDAC) method to identify spatial domains while reconstructing denoised gene expression profiles. This method can efficiently learn the low-dimensional embeddings for spatial transcriptomics data by constructing multi-view graph modules to capture both spatial location connectives and morphological connectives. Benchmark results demonstrate that SpaDAC outperforms other algorithms on several recent spatial transcriptomics datasets. SpaDAC is a valuable tool for spatial domain detection, facilitating the comprehension of tissue architecture and cellular microenvironment. The source code of SpaDAC is freely available at Github (https://github.com/huoyuying/SpaDAC.git).
  • loading
  • [1]
    Bai, J., Ren, Y.,Zhang, J. 2021. Ripple walk training: a subgraph-based training framework for large and deep graph neural network. 2021 International Joint Conference on Neural Networks (IJCNN) IEEE.
    [2]
    Bao, F., Deng, Y., Wan, S., Shen, S.Q., Wang, B., Dai, Q., Altschuler, S.J.,Wu, L.F., 2022. Integrative spatial analysis of cell morphologies and transcriptional states with MUSE. Nat. Biotechnol. 40, 1200-1209.
    [3]
    Berghuis, P., Agerman, K., Dobszay, M.B., Minichiello, L., Harkany, T.,Ernfors, P., 2006. Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCγ pathway. J. Neurobiol. 66, 1437-1451.
    [4]
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R.,Lefebvre, E., 2008. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008.
    [5]
    Carson, J.P., Ju, T., Lu, H.-C., Thaller, C., Xu, M., Pallas, S.L., Crair, M.C., Warren, J., Chiu, W.,Eichele, G., 2005. A digital atlas to characterize the mouse brain transcriptome. PLoS Comput. Biol. 1, e41.
    [6]
    Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S.,Zhuang, X., 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090.
    [7]
    Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J.,Hao, S., 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777-1792. e1721.
    [8]
    Codeluppi, S., Borm, L.E., Zeisel, A., Manno, G.L., van Lunteren, J.A., Svensson, C.I.,Linnarsson, S., 2018. Spatial organization of the somatosensory cortex revealed by cyclic smFISH. bioRxiv, 276097.
    [9]
    David, T., Sidd, P.,Jose, O., 2006. Accelerator: using data parallelism to program GPUs for general-purpose uses. ACM SIGPLAN Not. 41.
    [10]
    Deng, J., Dong, W., Socher, R., Li, L.J., Kai, L.,Li, F.-F. 2009. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition.
    [11]
    Dong, K.,Zhang, S., 2022. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739.
    [12]
    Eng, C.-H.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., Karp, C.,Yuan, G.-C., 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235-239.
    [13]
    Femino, A.M., Fay, F.S., Fogarty, K.,Singer, R.H., 1998. Visualization of single RNA transcripts in situ. Science 280, 585-590.
    [14]
    Fraley, C., Raftery, A.E., Murphy, T.B.,Scrucca, L. 2012. mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation Technical report.
    [15]
    Fu, H., Xu, H., Chong, K., Li, M., Ang, K.S., Lee, H.K., Ling, J., Chen, A., Shao, L.,Liu, L., 2021. Unsupervised spatially embedded deep representation of spatial transcriptomics. bioRxiv, 2021.2006. 2015.448542.
    [16]
    Gil-Sanz, C., Espinosa, A., Fregoso, S.P., Bluske, K.K., Cunningham, C.L., Martinez-Garay, I., Zeng, H., Franco, S.J.,Muller, U., 2015. Lineage tracing using Cux2-cre and Cux2-CreERT2 mice. Neuron. 86, 1091-1099.
    [17]
    Hafemeister, C.,Satija, R., 2019. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296.
    [18]
    Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C.,Zager, M., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.
    [19]
    Hartigan, J.A.,Wong, M.A., 1979. Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. C-Appl. 28, 100-108.
    [20]
    He, K., Zhang, X., Ren, S.,Sun, J. 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
    [21]
    Hu, J., Li, X., Coleman, K., Schroeder, A., Ma, N., Irwin, D.J., Lee, E.B., Shinohara, R.T.,Li, M., 2021a. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342-1351.
    [22]
    Hu, J., Schroeder, A., Coleman, K., Chen, C., Auerbach, B.J.,Li, M., 2021b. Statistical and machine learning methods for spatially resolved transcriptomics with histology. Comput. Struct. Biotechnol. J. 19, 3829-3841.
    [23]
    Jacque, C., Collet, A., Raoul, M., Monge, M.,Gumpel, M., 1985. Functional maturation of the oligodendrocytes and myelin basic protein expression in the olfactory bulb of the mouse. Brain Res. Dev. Brain Res. 21, 277-282.
    [24]
    Kasukawa, T., Masumoto, K.-h., Nikaido, I., Nagano, M., Uno, K.D., Tsujino, K., Hanashima, C., Shigeyoshi, Y.,Ueda, H.R., 2011. Quantitative expression profile of distinct functional regions in the adult mouse brain. PLoS One 6, e23228.
    [25]
    Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wahlby, C.,Nilsson, M., 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857-860.
    [26]
    Kiselev, V.Y., Kirschner, K., Schaub, M.T., Andrews, T., Yiu, A., Chandra, T., Natarajan, K.N., Reik, W., Barahona, M.,Green, A.R., 2017. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483-486.
    [27]
    Laeremans, A., Nys, J., Luyten, W., D'Hooge, R., Paulussen, M.,Arckens, L., 2013. AMIGO2 mRNA expression in hippocampal CA2 and CA3a. Brain Struct. Funct. 218, 123-130.
    [28]
    Li, H., Ruberu, K., Karl, T.,Garner, B., 2016. Cerebral apolipoprotein-D is hypoglycosylated compared to peripheral tissues and is variably expressed in mouse and human brain regions. PLoS One 11, e0148238.
    [29]
    Li, Y., Ouyang, W., Zhou, B., Shi, J., Zhang, C.,Wang, X. 2018. Factorizable net: an efficient subgraph-based framework for scene graph generation. Proceedings of the European Conference on Computer Vision (ECCV).
    [30]
    Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S.,Byrnes, E.J., 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176.
    [31]
    Li, J., Chen, S., Pan, X., Yuan, Y.,Shen, H.-b., 2021. CCST: cell clustering for spatial transcriptomics data with graph neural network. Nat. Comput. Sci. 2, 399-408.
    [32]
    Ling, K.-H., Hewitt, C.A., Beissbarth, T., Hyde, L., Cheah, P.-S., Smyth, G.K., Tan, S.-S., Hahn, C.N., Thomas, T.,Thomas, P.Q., 2011. Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. Cereb. Cortex 21, 683-697.
    [33]
    Lu, W., Chen, S., Chen, X., Hu, J., Xuan, A.,Ding, S.L., 2020. Localization of area prostriata and its connections with primary visual cortex in rodent. J. Comp. Neurol. 528, 389-406.
    [34]
    Ma, J., Dankulich-Nagrudny, L.,Lowe, G., 2013. Cholecystokinin: an excitatory modulator of mitral/tufted cells in the mouse olfactory bulb. PLoS One 8, e64170.
    [35]
    Mamoor, S., 2020. The α1 subunit of the γ-aminobutyric acid receptor, Gabra1, is differentially expressed in the brains of patients with schizophrenia.
    [36]
    Maynard, K.R., Collado-Torres, L., Weber, L.M., Uytingco, C., Barry, B.K., Williams, S.R., Catallini, J.L., Tran, M.N., Besich, Z.,Tippani, M., 2021. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425-436.
    [37]
    Moncada, R., Barkley, D., Wagner, F., Chiodin, M., Devlin, J.C., Baron, M., Hajdu, C.H., Simeone, D.M.,Yanai, I., 2020. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333-342.
    [38]
    Moon, S.,Zhao, Y.-T., 2021. Spatial, temporal and cell-type-specific expression profiles of genes encoding heparan sulfate biosynthesis enzymes and proteoglycan core proteins. Glycobiology 31, 1308-1318.
    [39]
    Ortiz, C., Navarro, J.F., Jurek, A., Martin, A., Lundeberg, J.,Meletis, K., 2020. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446.
    [40]
    Pham, D., Tan, X., Xu, J., Grice, L.F., Lam, P.Y., Raghubar, A., Vukovic, J., Ruitenberg, M.J.,Nguyen, Q., 2020. stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv, 2020.2005. 2031.125658.
    [41]
    Raj, A., Van Den Bogaard, P., Rifkin, S.A., Van Oudenaarden, A.,Tyagi, S., 2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877-879.
    [42]
    Rao, A., Barkley, D., Franca, G.S.,Yanai, I., 2021. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211-220.
    [43]
    Renelt, M., und Halbach, V.v.B.,und Halbach, O.v.B., 2014. Distribution of PCP4 protein in the forebrain of adult mice. Acta Histochem. 116, 1056-1061.
    [44]
    Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F.,Macosko, E.Z., 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463-1467.
    [45]
    Romano, S., Bailey, J., Nguyen, V.,Verspoor, K. 2014. Standardized mutual information for clustering comparisons: one step further in adjustment for chance. International Conference on Machine Learning PMLR.
    [46]
    Salehi, A.,Davulcu, H., 2019. Graph Attention Auto-Encoders. arXiv preprint arXiv:190510715.
    [47]
    Shallue, C.J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R.,Dahl, G.E., 2019. Measuring the effects of data parallelism on neural network training. J. Mach. Learn. Res. 20.
    [48]
    Shan, Y., Zhang, Q., Guo, W., Wu, Y., Miao, Y., Xin, H., Lian, Q.,Gu, J., 2022. TIST: transcriptome and histopathological image integrative analysis for spatial transcriptomics. Genom. Proteom. Bioinform.
    [49]
    Shimizu, T.,Hibi, M., 2009. Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2. Dev. Growth Differ. 51, 221-231.
    [50]
    Shlens, J., 2014. A Tutorial on Principal Component Analysis. CoRR abs/1404.1100.
    [51]
    Sripada, S.C.,Rao, M.S., 2011. Comparison of purity and entropy of k-means clustering and fuzzy c means clustering. Indian J. Comput. Sci. Eng. 2, 343-346.
    [52]
    Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O.,Huss, M., 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82.
    [53]
    Steinley, D., 2004. Properties of the hubert-arable adjusted rand index. Psychol. Methods 9, 386.
    [54]
    Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M., Smibert, P.,Satija, R., 2019. Comprehensive integration of single-cell data. Cell 177, 1888-1902. e1821.
    [55]
    Subhlok, J., Stichnoth, J.M., O'Hallaron, D.R.,Gross, T., 1993. Exploiting task and data parallelism on a multicomputer. ACM SIGPLAN Not. 28.
    [56]
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.,Wojna, Z. 2016. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
    [57]
    Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P.,Bengio, Y., 2017. Graph Attention Networks. arXiv preprint arXiv:171010903.
    [58]
    Vickovic, S., Eraslan, G., Salmen, F., Klughammer, J., Stenbeck, L., Schapiro, D., Aijo, T., Bonneau, R., Bergenstrahle, L.,Navarro, J.F., 2019. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987-990.
    [59]
    Wang, X., Allen, W.E., Wright, M.A., Sylwestrak, E.L., Samusik, N., Vesuna, S., Evans, K., Liu, C., Ramakrishnan, C.,Liu, J., 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691.
    [60]
    Wang, C., Pan, S., Hu, R., Long, G., Jiang, J.,Zhang, C., 2019. Attributed Graph Clustering: A Deep Attentional Embedding Approach. arXiv preprint arXiv:190606532.
    [61]
    Wolf, F.A., Angerer, P.,Theis, F.J., 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 1-5.
    [62]
    Wu, S.Z., Al-Eryani, G., Roden, D.L., Junankar, S., Harvey, K., Andersson, A., Thennavan, A., Wang, C., Torpy, J.R.,Bartonicek, N., 2021. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334-1347.
    [63]
    Xie, J., Girshick, R.,Farhadi, A. 2016. Unsupervised deep embedding for clustering analysis. International Conference on Machine Learning PMLR.
    [64]
    Zeisel, A., Hochgerner, H., Lonnerberg, P., Johnsson, A., Memic, F., Van Der Zwan, J., Haring, M., Braun, E., Borm, L.E.,La Manno, G., 2018. Molecular architecture of the mouse nervous system. Cell 174, 999-1014. e1022.
    [65]
    Zeng, H., Shen, E.H., Hohmann, J.G., Oh, S.W., Bernard, A., Royall, J.J., Glattfelder, K.J., Sunkin, S.M., Morris, J.A.,Guillozet-Bongaarts, A.L., 2012. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483-496.
    [66]
    Zhao, E., Stone, M.R., Ren, X., Guenthoer, J., Smythe, K.S., Pulliam, T., Williams, S.R., Uytingco, C.R., Taylor, S.E.,Nghiem, P., 2021. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375-1384.
    [67]
    Zhou, X., Dong, K.,Zhang, S., 2022. Integrating spatial transcriptomics data across different conditions, technologies, and developmental stages. bioRxiv, 2022.2012. 2026.521888.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (308) PDF downloads (16) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return