[1] |
Bai, J., Ren, Y.,Zhang, J. 2021. Ripple walk training: a subgraph-based training framework for large and deep graph neural network. 2021 International Joint Conference on Neural Networks (IJCNN) IEEE.
|
[2] |
Bao, F., Deng, Y., Wan, S., Shen, S.Q., Wang, B., Dai, Q., Altschuler, S.J.,Wu, L.F., 2022. Integrative spatial analysis of cell morphologies and transcriptional states with MUSE. Nat. Biotechnol. 40, 1200-1209.
|
[3] |
Berghuis, P., Agerman, K., Dobszay, M.B., Minichiello, L., Harkany, T.,Ernfors, P., 2006. Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCγ pathway. J. Neurobiol. 66, 1437-1451.
|
[4] |
Blondel, V.D., Guillaume, J.-L., Lambiotte, R.,Lefebvre, E., 2008. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008.
|
[5] |
Carson, J.P., Ju, T., Lu, H.-C., Thaller, C., Xu, M., Pallas, S.L., Crair, M.C., Warren, J., Chiu, W.,Eichele, G., 2005. A digital atlas to characterize the mouse brain transcriptome. PLoS Comput. Biol. 1, e41.
|
[6] |
Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S.,Zhuang, X., 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090.
|
[7] |
Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J.,Hao, S., 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777-1792. e1721.
|
[8] |
Codeluppi, S., Borm, L.E., Zeisel, A., Manno, G.L., van Lunteren, J.A., Svensson, C.I.,Linnarsson, S., 2018. Spatial organization of the somatosensory cortex revealed by cyclic smFISH. bioRxiv, 276097.
|
[9] |
David, T., Sidd, P.,Jose, O., 2006. Accelerator: using data parallelism to program GPUs for general-purpose uses. ACM SIGPLAN Not. 41.
|
[10] |
Deng, J., Dong, W., Socher, R., Li, L.J., Kai, L.,Li, F.-F. 2009. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition.
|
[11] |
Dong, K.,Zhang, S., 2022. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739.
|
[12] |
Eng, C.-H.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., Karp, C.,Yuan, G.-C., 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568, 235-239.
|
[13] |
Femino, A.M., Fay, F.S., Fogarty, K.,Singer, R.H., 1998. Visualization of single RNA transcripts in situ. Science 280, 585-590.
|
[14] |
Fraley, C., Raftery, A.E., Murphy, T.B.,Scrucca, L. 2012. mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation Technical report.
|
[15] |
Fu, H., Xu, H., Chong, K., Li, M., Ang, K.S., Lee, H.K., Ling, J., Chen, A., Shao, L.,Liu, L., 2021. Unsupervised spatially embedded deep representation of spatial transcriptomics. bioRxiv, 2021.2006. 2015.448542.
|
[16] |
Gil-Sanz, C., Espinosa, A., Fregoso, S.P., Bluske, K.K., Cunningham, C.L., Martinez-Garay, I., Zeng, H., Franco, S.J.,Muller, U., 2015. Lineage tracing using Cux2-cre and Cux2-CreERT2 mice. Neuron. 86, 1091-1099.
|
[17] |
Hafemeister, C.,Satija, R., 2019. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296.
|
[18] |
Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C.,Zager, M., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.
|
[19] |
Hartigan, J.A.,Wong, M.A., 1979. Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. C-Appl. 28, 100-108.
|
[20] |
He, K., Zhang, X., Ren, S.,Sun, J. 2016. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
|
[21] |
Hu, J., Li, X., Coleman, K., Schroeder, A., Ma, N., Irwin, D.J., Lee, E.B., Shinohara, R.T.,Li, M., 2021a. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342-1351.
|
[22] |
Hu, J., Schroeder, A., Coleman, K., Chen, C., Auerbach, B.J.,Li, M., 2021b. Statistical and machine learning methods for spatially resolved transcriptomics with histology. Comput. Struct. Biotechnol. J. 19, 3829-3841.
|
[23] |
Jacque, C., Collet, A., Raoul, M., Monge, M.,Gumpel, M., 1985. Functional maturation of the oligodendrocytes and myelin basic protein expression in the olfactory bulb of the mouse. Brain Res. Dev. Brain Res. 21, 277-282.
|
[24] |
Kasukawa, T., Masumoto, K.-h., Nikaido, I., Nagano, M., Uno, K.D., Tsujino, K., Hanashima, C., Shigeyoshi, Y.,Ueda, H.R., 2011. Quantitative expression profile of distinct functional regions in the adult mouse brain. PLoS One 6, e23228.
|
[25] |
Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wahlby, C.,Nilsson, M., 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857-860.
|
[26] |
Kiselev, V.Y., Kirschner, K., Schaub, M.T., Andrews, T., Yiu, A., Chandra, T., Natarajan, K.N., Reik, W., Barahona, M.,Green, A.R., 2017. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483-486.
|
[27] |
Laeremans, A., Nys, J., Luyten, W., D'Hooge, R., Paulussen, M.,Arckens, L., 2013. AMIGO2 mRNA expression in hippocampal CA2 and CA3a. Brain Struct. Funct. 218, 123-130.
|
[28] |
Li, H., Ruberu, K., Karl, T.,Garner, B., 2016. Cerebral apolipoprotein-D is hypoglycosylated compared to peripheral tissues and is variably expressed in mouse and human brain regions. PLoS One 11, e0148238.
|
[29] |
Li, Y., Ouyang, W., Zhou, B., Shi, J., Zhang, C.,Wang, X. 2018. Factorizable net: an efficient subgraph-based framework for scene graph generation. Proceedings of the European Conference on Computer Vision (ECCV).
|
[30] |
Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S.,Byrnes, E.J., 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176.
|
[31] |
Li, J., Chen, S., Pan, X., Yuan, Y.,Shen, H.-b., 2021. CCST: cell clustering for spatial transcriptomics data with graph neural network. Nat. Comput. Sci. 2, 399-408.
|
[32] |
Ling, K.-H., Hewitt, C.A., Beissbarth, T., Hyde, L., Cheah, P.-S., Smyth, G.K., Tan, S.-S., Hahn, C.N., Thomas, T.,Thomas, P.Q., 2011. Spatiotemporal regulation of multiple overlapping sense and novel natural antisense transcripts at the Nrgn and Camk2n1 gene loci during mouse cerebral corticogenesis. Cereb. Cortex 21, 683-697.
|
[33] |
Lu, W., Chen, S., Chen, X., Hu, J., Xuan, A.,Ding, S.L., 2020. Localization of area prostriata and its connections with primary visual cortex in rodent. J. Comp. Neurol. 528, 389-406.
|
[34] |
Ma, J., Dankulich-Nagrudny, L.,Lowe, G., 2013. Cholecystokinin: an excitatory modulator of mitral/tufted cells in the mouse olfactory bulb. PLoS One 8, e64170.
|
[35] |
Mamoor, S., 2020. The α1 subunit of the γ-aminobutyric acid receptor, Gabra1, is differentially expressed in the brains of patients with schizophrenia.
|
[36] |
Maynard, K.R., Collado-Torres, L., Weber, L.M., Uytingco, C., Barry, B.K., Williams, S.R., Catallini, J.L., Tran, M.N., Besich, Z.,Tippani, M., 2021. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425-436.
|
[37] |
Moncada, R., Barkley, D., Wagner, F., Chiodin, M., Devlin, J.C., Baron, M., Hajdu, C.H., Simeone, D.M.,Yanai, I., 2020. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333-342.
|
[38] |
Moon, S.,Zhao, Y.-T., 2021. Spatial, temporal and cell-type-specific expression profiles of genes encoding heparan sulfate biosynthesis enzymes and proteoglycan core proteins. Glycobiology 31, 1308-1318.
|
[39] |
Ortiz, C., Navarro, J.F., Jurek, A., Martin, A., Lundeberg, J.,Meletis, K., 2020. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446.
|
[40] |
Pham, D., Tan, X., Xu, J., Grice, L.F., Lam, P.Y., Raghubar, A., Vukovic, J., Ruitenberg, M.J.,Nguyen, Q., 2020. stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv, 2020.2005. 2031.125658.
|
[41] |
Raj, A., Van Den Bogaard, P., Rifkin, S.A., Van Oudenaarden, A.,Tyagi, S., 2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877-879.
|
[42] |
Rao, A., Barkley, D., Franca, G.S.,Yanai, I., 2021. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211-220.
|
[43] |
Renelt, M., und Halbach, V.v.B.,und Halbach, O.v.B., 2014. Distribution of PCP4 protein in the forebrain of adult mice. Acta Histochem. 116, 1056-1061.
|
[44] |
Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F.,Macosko, E.Z., 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463-1467.
|
[45] |
Romano, S., Bailey, J., Nguyen, V.,Verspoor, K. 2014. Standardized mutual information for clustering comparisons: one step further in adjustment for chance. International Conference on Machine Learning PMLR.
|
[46] |
Salehi, A.,Davulcu, H., 2019. Graph Attention Auto-Encoders. arXiv preprint arXiv:190510715.
|
[47] |
Shallue, C.J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R.,Dahl, G.E., 2019. Measuring the effects of data parallelism on neural network training. J. Mach. Learn. Res. 20.
|
[48] |
Shan, Y., Zhang, Q., Guo, W., Wu, Y., Miao, Y., Xin, H., Lian, Q.,Gu, J., 2022. TIST: transcriptome and histopathological image integrative analysis for spatial transcriptomics. Genom. Proteom. Bioinform.
|
[49] |
Shimizu, T.,Hibi, M., 2009. Formation and patterning of the forebrain and olfactory system by zinc-finger genes Fezf1 and Fezf2. Dev. Growth Differ. 51, 221-231.
|
[50] |
Shlens, J., 2014. A Tutorial on Principal Component Analysis. CoRR abs/1404.1100.
|
[51] |
Sripada, S.C.,Rao, M.S., 2011. Comparison of purity and entropy of k-means clustering and fuzzy c means clustering. Indian J. Comput. Sci. Eng. 2, 343-346.
|
[52] |
Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O.,Huss, M., 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78-82.
|
[53] |
Steinley, D., 2004. Properties of the hubert-arable adjusted rand index. Psychol. Methods 9, 386.
|
[54] |
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M., Smibert, P.,Satija, R., 2019. Comprehensive integration of single-cell data. Cell 177, 1888-1902. e1821.
|
[55] |
Subhlok, J., Stichnoth, J.M., O'Hallaron, D.R.,Gross, T., 1993. Exploiting task and data parallelism on a multicomputer. ACM SIGPLAN Not. 28.
|
[56] |
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.,Wojna, Z. 2016. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
|
[57] |
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P.,Bengio, Y., 2017. Graph Attention Networks. arXiv preprint arXiv:171010903.
|
[58] |
Vickovic, S., Eraslan, G., Salmen, F., Klughammer, J., Stenbeck, L., Schapiro, D., Aijo, T., Bonneau, R., Bergenstrahle, L.,Navarro, J.F., 2019. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987-990.
|
[59] |
Wang, X., Allen, W.E., Wright, M.A., Sylwestrak, E.L., Samusik, N., Vesuna, S., Evans, K., Liu, C., Ramakrishnan, C.,Liu, J., 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691.
|
[60] |
Wang, C., Pan, S., Hu, R., Long, G., Jiang, J.,Zhang, C., 2019. Attributed Graph Clustering: A Deep Attentional Embedding Approach. arXiv preprint arXiv:190606532.
|
[61] |
Wolf, F.A., Angerer, P.,Theis, F.J., 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 1-5.
|
[62] |
Wu, S.Z., Al-Eryani, G., Roden, D.L., Junankar, S., Harvey, K., Andersson, A., Thennavan, A., Wang, C., Torpy, J.R.,Bartonicek, N., 2021. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334-1347.
|
[63] |
Xie, J., Girshick, R.,Farhadi, A. 2016. Unsupervised deep embedding for clustering analysis. International Conference on Machine Learning PMLR.
|
[64] |
Zeisel, A., Hochgerner, H., Lonnerberg, P., Johnsson, A., Memic, F., Van Der Zwan, J., Haring, M., Braun, E., Borm, L.E.,La Manno, G., 2018. Molecular architecture of the mouse nervous system. Cell 174, 999-1014. e1022.
|
[65] |
Zeng, H., Shen, E.H., Hohmann, J.G., Oh, S.W., Bernard, A., Royall, J.J., Glattfelder, K.J., Sunkin, S.M., Morris, J.A.,Guillozet-Bongaarts, A.L., 2012. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483-496.
|
[66] |
Zhao, E., Stone, M.R., Ren, X., Guenthoer, J., Smythe, K.S., Pulliam, T., Williams, S.R., Uytingco, C.R., Taylor, S.E.,Nghiem, P., 2021. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375-1384.
|
[67] |
Zhou, X., Dong, K.,Zhang, S., 2022. Integrating spatial transcriptomics data across different conditions, technologies, and developmental stages. bioRxiv, 2022.2012. 2026.521888.
|