[1] |
Baron, C.S., Kester, L., Klaus, A., Boisset, J.C., Thambyrajah, R., Yvernogeau, L., Kouskoff, V., Lacaud, G., van Oudenaarden, A.,Robin, C., 2018. Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nat. Commun. 9, 2517.
|
[2] |
Boiers, C., Carrelha, J., Lutteropp, M., Luc, S., Green, J.C., Azzoni, E., Woll, P.S., Mead, A.J., Hultquist, A., Swiers, G., et al., 2013. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13, 535-548.
|
[3] |
Carsetti, R., Rosado, M.M.,Wardmann, H., 2004. Peripheral development of B cells in mouse and man. Immunol. Rev. 197, 179-191.
|
[4] |
Cumano, A., Furlonger, C.,Paige, C.J., 1993. Differentiation and characterization of B-cell precursors detected in the yolk sac and embryo body of embryos beginning at the 10- to 12-somite stage. Proc. Natl. Acad. Sci. U. S. A. 90, 6429-6433.
|
[5] |
de Bruijn, M.F., Speck, N.A., Peeters, M.C.,Dzierzak, E., 2000. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465-2474.
|
[6] |
Dege, C., Fegan, K.H., Creamer, J.P., Berrien-Elliott, M.M., Luff, S.A., Kim, D., Wagner, J.A., Kingsley, P.D., McGrath, K.E., Fehniger, T.A., et al., 2020. Potently cytotoxic natural killer cells initially emerge from erythro-myeloid progenitors during mammalian development. Dev. Cell 53, 229-239 e227.
|
[7] |
Dzierzak, E.,Bigas, A., 2018. Blood development: Hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639-651.
|
[8] |
Fadlullah MZ, N.W., Lie-a-ling M, et al., 2021. Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood 139, 343-356.
|
[9] |
Frame, J.M., Fegan, K.H., Conway, S.J., McGrath, K.E.,Palis, J., 2016. Definitive hematopoiesis in the yolk sac emerges from wnt-responsive hemogenic endothelium independently of circulation and arterial identity. Stem Cells 34, 431-444.
|
[10] |
Gao, S., Shi, Q., Zhang, Y., Liang, G., Kang, Z., Huang, B., Ma, D., Wang, L., Jiao, J., Fang, X., et al., 2022. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res. 32, 38-53.
|
[11] |
Hall, T.D., Kim, H., Dabbah, M., Myers, J.A., Crawford, J.C., Morales-Hernandez, A., Caprio, C.E., Sriram, P., Kooienga, E., Derecka, M., et al., 2022. Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nat. Commun. 13, 5403.
|
[12] |
Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587 e3529.
|
[13] |
Hou, S., Li, Z., Dong, J., Gao, Y., Chang, Z., Ding, X., Li, S., Li, Y., Zeng, Y., Xin, Q., et al., 2022. Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals. Cell Res. 32, 333-348.
|
[14] |
Hou, S., Li, Z., Zheng, X., Gao, Y., Dong, J., Ni, Y., Wang, X., Li, Y., Ding, X., Chang, Z., et al., 2020. Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res. 30, 376-392.
|
[15] |
Hu, Y., Nguyen, T.T., Bui, K.C., Demello, D.E.,Smith, J.B., 2005. A novel inflammation-induced ubiquitin E3 ligase in alveolar type II cells. Biochem. Biophys. Res. Commun. 333, 253-263.
|
[16] |
Huang, H., Zettergren, L.D.,Auerbach, R., 1994. In vitro differentiation of B cells and myeloid cells from the early mouse embryo and its extraembryonic yolk sac. Exp. Hematol. 22, 19-25.
|
[17] |
Ivanovs, A., Rybtsov, S., Welch, L., Anderson, R.A., Turner, M.L.,Medvinsky, A., 2011. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J. Exp. Med. 208, 2417-2427.
|
[18] |
Li, C.C., Zhang, G., Du, J., Liu, D., Li, Z., Ni, Y., Zhou, J., Li, Y., Hou, S., Zheng, X., et al., 2022. Pre-configuring chromatin architecture with histone modifications guides hematopoietic stem cell formation in mouse embryos. Nat. Commun. 13, 346.
|
[19] |
Li, Y.Q., Gong, Y., Hou, S., Huang, T., Wang, H., Liu, D., Ni, Y., Wang, C., Wang, J., Hou, J., et al., 2021. Spatiotemporal and functional heterogeneity of hematopoietic stem cell-competent hemogenic endothelial cells in mouse embryos. Front. Cell Dev. Biol. 9, 699263.
|
[20] |
Li, Z., Lan, Y., He, W., Chen, D., Wang, J., Zhou, F., Wang, Y., Sun, H., Chen, X., Xu, C., et al., 2012. Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell 11, 663-675.
|
[21] |
Liu, C.P.,Auerbach, R., 1991. In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells. Development 113, 1315-1323.
|
[22] |
McGrath, K.E., Frame, J.M., Fegan, K.H., Bowen, J.R., Conway, S.J., Catherman, S.C., Kingsley, P.D., Koniski, A.D.,Palis, J., 2015. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11, 1892-1904.
|
[23] |
Medvinsky, A.,Dzierzak, E., 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897-906.
|
[24] |
Neo, W.H., Lie, A.L.M., Fadlullah, M.Z.H.,Lacaud, G., 2021. Contributions of embryonic HSC-independent hematopoiesis to organogenesis and the adult hematopoietic system. Front. Cell Dev. Biol. 9, 631699.
|
[25] |
Palis, J., 2016. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 590, 3965-3974.
|
[26] |
Palis, J., Robertson, S., Kennedy, M., Wall, C.,Keller, G., 1999. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073-5084.
|
[27] |
Rybtsov, S., Sobiesiak, M., Taoudi, S., Souilhol, C., Senserrich, J., Liakhovitskaia, A., Ivanovs, A., Frampton, J., Zhao, S.,Medvinsky, A., 2011. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J. Exp. Med. 208, 1305-1315.
|
[28] |
Simons, M.,Eichmann, A., 2015. Molecular controls of arterial morphogenesis. Circ. Res. 116, 1712-1724.
|
[29] |
Smith, J.B.,Herschman, H.R., 2004. Targeted identification of glucocorticoid-attenuated response genes: in vitro and in vivo models. Proc. Am. Thorac. Soc. 1, 275-281.
|
[30] |
Su, T., Stanley, G., Sinha, R., D'Amato, G., Das, S., Rhee, S., Chang, A.H., Poduri, A., Raftrey, B., Dinh, T.T., et al., 2018. Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559, 356-362.
|
[31] |
Tabula Muris, C., Overall, c., Logistical, c., Organ, c., processing, Library, p., sequencing, Computational data, a., Cell type, a., Writing, g., et al., 2018. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367-372.
|
[32] |
Uenishi, G.I., Jung, H.S., Kumar, A., Park, M.A., Hadland, B.K., McLeod, E., Raymond, M., Moskvin, O., Zimmerman, C.E., Theisen, D.J., et al., 2018. NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells. Nat. Commun. 9, 1828.
|
[33] |
Wang, C., Gong, Y., Wei, A., Huang, T., Hou, S., Du, J., Li, Z., Wang, J., Liu, B.,Lan, Y., 2021. Adult-repopulating lymphoid potential of yolk sac blood vessels is not confined to arterial endothelial cells. Sci. China Life Sci. 64, 2073-2087.
|
[34] |
Wang, F., Tan, P., Zhang, P., Ren, Y., Zhou, J., Li, Y., Hou, S., Li, S., Zhang, L., Ma, Y., et al., 2022. Single-cell architecture and functional requirement of alternative splicing during hematopoietic stem cell formation. Sci. Adv. 8, eabg5369.
|
[35] |
Xu, W., Li, H., Dong, Z., Cui, Z., Zhang, N., Meng, L., Zhu, Y., Liu, Y., Li, Y., Guo, H., et al., 2016. Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination. Gene 592, 215-220.
|
[36] |
Yamane, T., Hosen, N., Yamazaki, H.,Weissman, I.L., 2009. Expression of AA4.1 marks lymphohematopoietic progenitors in early mouse development. Proc. Natl. Acad. Sci. U. S. A. 106, 8953-8958.
|
[37] |
Yokomizo, T., Ideue, T., Morino-Koga, S., Tham, C.Y., Sato, T., Takeda, N., Kubota, Y., Kurokawa, M., Komatsu, N., Ogawa, M., et al., 2022. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 609, 779-784.
|
[38] |
Yoshimoto, M., Montecino-Rodriguez, E., Ferkowicz, M.J., Porayette, P., Shelley, W.C., Conway, S.J., Dorshkind, K.,Yoder, M.C., 2011. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc. Natl. Acad. Sci. U S A 108, 1468-1473.
|
[39] |
Yoshimoto, M., Porayette, P., Glosson, N.L., Conway, S.J., Carlesso, N., Cardoso, A.A., Kaplan, M.H.,Yoder, M.C., 2012. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119, 5706-5714.
|
[40] |
Yoshimoto, M., Porayette, P.,Yoder, M.C., 2008. Overcoming obstacles in the search for the site of hematopoietic stem cell emergence. Cell Stem Cell 3, 583-586.
|
[41] |
Yu, G., Wang, L.G., Han, Y.,He, Q.Y., 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.
|
[42] |
Yzaguirre, A.D.,Speck, N.A., 2016. Insights into blood cell formation from hemogenic endothelium in lesser-known anatomic sites. Dev. Dyn. 245, 1011-1028.
|
[43] |
Zeng, Y., He, J., Bai, Z., Li, Z., Gong, Y., Liu, C., Ni, Y., Du, J., Ma, C., Bian, L., et al., 2019. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res. 29, 881-894.
|
[44] |
Zhou, F., Li, X., Wang, W., Zhu, P., Zhou, J., He, W., Ding, M., Xiong, F., Zheng, X., Li, Z., et al., 2016. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533, 487-492.
|
[45] |
Zhou, J., Xu, J., Zhang, L., Liu, S., Ma, Y., Wen, X., Hao, J., Li, Z., Ni, Y., Li, X., et al., 2019. Combined single-cell profiling of lncRNAs and functional screening reveals that H19 is pivotal for embryonic hematopoietic stem cell development. Cell Stem Cell 24, 285-298 e285.
|
[46] |
Zhu, Q., Gao, P., Tober, J., Bennett, L., Chen, C., Uzun, Y., Li, Y., Howell, E.D., Mumau, M., Yu, W., et al., 2020. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood 136, 845-856.
|