5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 9
Sep.  2023
Turn off MathJax
Article Contents

Divergent expression of Neurl3 from hemogenic endothelial cells to hematopoietic stem progenitor cells during development

doi: 10.1016/j.jgg.2023.05.006 cstr: 32370.14.j.jgg.2023.05.006
Funds:

This work was supported by the National Key R&D Program of China (2022YFA1103501, 2020YFA0112400, 2021YFA1100102), the National Natural Science Foundation of China (82000111, 81890991, 31930054, 82200121, 82122004, 82270118), and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07S347).

  • Received Date: 2023-02-13
  • Accepted Date: 2023-05-15
  • Rev Recd Date: 2023-05-07
  • Publish Date: 2023-05-23
  • Prior to the generation of hematopoietic stem cells (HSCs) from the hemogenic endothelial cells (HECs) mainly in the dorsal aorta in midgestational mouse embryos, multiple hematopoietic progenitors including erythro-myeloid progenitors and lymphoid progenitors are generated from yolk sac HECs. These HSC-independent hematopoietic progenitors have recently been identified as major contributors to functional blood cell production until birth. However, little is known about yolk sac HECs. Here, combining integrative analyses of multiple single-cell RNA-sequencing datasets and functional assays, we reveal that Neurl3-EGFP, in addition to marking the continuum throughout the ontogeny of HSCs from HECs, can also serve as a single enrichment marker for yolk sac HECs. Moreover, while yolk sac HECs have much weaker arterial characteristics than either arterial endothelial cells in the yolk sac or HECs within the embryo proper, the lymphoid potential of yolk sac HECs is largely confined to the arterial-biased subpopulation featured by the Unc5b expression. Interestingly, the B lymphoid potential of hematopoietic progenitors, but not for myeloid potentials, is exclusively detected in Neurl3-negative subpopulations in midgestational embryos. Taken together, these findings enhance our understanding of blood birth from yolk sac HECs and provide theoretical basis and candidate reporters for monitoring step-wise hematopoietic differentiation.
  • loading
  • [1]
    Baron, C.S., Kester, L., Klaus, A., Boisset, J.C., Thambyrajah, R., Yvernogeau, L., Kouskoff, V., Lacaud, G., van Oudenaarden, A.,Robin, C., 2018. Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nat. Commun. 9, 2517.
    [2]
    Boiers, C., Carrelha, J., Lutteropp, M., Luc, S., Green, J.C., Azzoni, E., Woll, P.S., Mead, A.J., Hultquist, A., Swiers, G., et al., 2013. Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13, 535-548.
    [3]
    Carsetti, R., Rosado, M.M.,Wardmann, H., 2004. Peripheral development of B cells in mouse and man. Immunol. Rev. 197, 179-191.
    [4]
    Cumano, A., Furlonger, C.,Paige, C.J., 1993. Differentiation and characterization of B-cell precursors detected in the yolk sac and embryo body of embryos beginning at the 10- to 12-somite stage. Proc. Natl. Acad. Sci. U. S. A. 90, 6429-6433.
    [5]
    de Bruijn, M.F., Speck, N.A., Peeters, M.C.,Dzierzak, E., 2000. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465-2474.
    [6]
    Dege, C., Fegan, K.H., Creamer, J.P., Berrien-Elliott, M.M., Luff, S.A., Kim, D., Wagner, J.A., Kingsley, P.D., McGrath, K.E., Fehniger, T.A., et al., 2020. Potently cytotoxic natural killer cells initially emerge from erythro-myeloid progenitors during mammalian development. Dev. Cell 53, 229-239 e227.
    [7]
    Dzierzak, E.,Bigas, A., 2018. Blood development: Hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639-651.
    [8]
    Fadlullah MZ, N.W., Lie-a-ling M, et al., 2021. Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood 139, 343-356.
    [9]
    Frame, J.M., Fegan, K.H., Conway, S.J., McGrath, K.E.,Palis, J., 2016. Definitive hematopoiesis in the yolk sac emerges from wnt-responsive hemogenic endothelium independently of circulation and arterial identity. Stem Cells 34, 431-444.
    [10]
    Gao, S., Shi, Q., Zhang, Y., Liang, G., Kang, Z., Huang, B., Ma, D., Wang, L., Jiao, J., Fang, X., et al., 2022. Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res. 32, 38-53.
    [11]
    Hall, T.D., Kim, H., Dabbah, M., Myers, J.A., Crawford, J.C., Morales-Hernandez, A., Caprio, C.E., Sriram, P., Kooienga, E., Derecka, M., et al., 2022. Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nat. Commun. 13, 5403.
    [12]
    Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587 e3529.
    [13]
    Hou, S., Li, Z., Dong, J., Gao, Y., Chang, Z., Ding, X., Li, S., Li, Y., Zeng, Y., Xin, Q., et al., 2022. Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals. Cell Res. 32, 333-348.
    [14]
    Hou, S., Li, Z., Zheng, X., Gao, Y., Dong, J., Ni, Y., Wang, X., Li, Y., Ding, X., Chang, Z., et al., 2020. Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res. 30, 376-392.
    [15]
    Hu, Y., Nguyen, T.T., Bui, K.C., Demello, D.E.,Smith, J.B., 2005. A novel inflammation-induced ubiquitin E3 ligase in alveolar type II cells. Biochem. Biophys. Res. Commun. 333, 253-263.
    [16]
    Huang, H., Zettergren, L.D.,Auerbach, R., 1994. In vitro differentiation of B cells and myeloid cells from the early mouse embryo and its extraembryonic yolk sac. Exp. Hematol. 22, 19-25.
    [17]
    Ivanovs, A., Rybtsov, S., Welch, L., Anderson, R.A., Turner, M.L.,Medvinsky, A., 2011. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J. Exp. Med. 208, 2417-2427.
    [18]
    Li, C.C., Zhang, G., Du, J., Liu, D., Li, Z., Ni, Y., Zhou, J., Li, Y., Hou, S., Zheng, X., et al., 2022. Pre-configuring chromatin architecture with histone modifications guides hematopoietic stem cell formation in mouse embryos. Nat. Commun. 13, 346.
    [19]
    Li, Y.Q., Gong, Y., Hou, S., Huang, T., Wang, H., Liu, D., Ni, Y., Wang, C., Wang, J., Hou, J., et al., 2021. Spatiotemporal and functional heterogeneity of hematopoietic stem cell-competent hemogenic endothelial cells in mouse embryos. Front. Cell Dev. Biol. 9, 699263.
    [20]
    Li, Z., Lan, Y., He, W., Chen, D., Wang, J., Zhou, F., Wang, Y., Sun, H., Chen, X., Xu, C., et al., 2012. Mouse embryonic head as a site for hematopoietic stem cell development. Cell Stem Cell 11, 663-675.
    [21]
    Liu, C.P.,Auerbach, R., 1991. In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells. Development 113, 1315-1323.
    [22]
    McGrath, K.E., Frame, J.M., Fegan, K.H., Bowen, J.R., Conway, S.J., Catherman, S.C., Kingsley, P.D., Koniski, A.D.,Palis, J., 2015. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11, 1892-1904.
    [23]
    Medvinsky, A.,Dzierzak, E., 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86, 897-906.
    [24]
    Neo, W.H., Lie, A.L.M., Fadlullah, M.Z.H.,Lacaud, G., 2021. Contributions of embryonic HSC-independent hematopoiesis to organogenesis and the adult hematopoietic system. Front. Cell Dev. Biol. 9, 631699.
    [25]
    Palis, J., 2016. Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo. FEBS Lett. 590, 3965-3974.
    [26]
    Palis, J., Robertson, S., Kennedy, M., Wall, C.,Keller, G., 1999. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073-5084.
    [27]
    Rybtsov, S., Sobiesiak, M., Taoudi, S., Souilhol, C., Senserrich, J., Liakhovitskaia, A., Ivanovs, A., Frampton, J., Zhao, S.,Medvinsky, A., 2011. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J. Exp. Med. 208, 1305-1315.
    [28]
    Simons, M.,Eichmann, A., 2015. Molecular controls of arterial morphogenesis. Circ. Res. 116, 1712-1724.
    [29]
    Smith, J.B.,Herschman, H.R., 2004. Targeted identification of glucocorticoid-attenuated response genes: in vitro and in vivo models. Proc. Am. Thorac. Soc. 1, 275-281.
    [30]
    Su, T., Stanley, G., Sinha, R., D'Amato, G., Das, S., Rhee, S., Chang, A.H., Poduri, A., Raftrey, B., Dinh, T.T., et al., 2018. Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559, 356-362.
    [31]
    Tabula Muris, C., Overall, c., Logistical, c., Organ, c., processing, Library, p., sequencing, Computational data, a., Cell type, a., Writing, g., et al., 2018. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367-372.
    [32]
    Uenishi, G.I., Jung, H.S., Kumar, A., Park, M.A., Hadland, B.K., McLeod, E., Raymond, M., Moskvin, O., Zimmerman, C.E., Theisen, D.J., et al., 2018. NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells. Nat. Commun. 9, 1828.
    [33]
    Wang, C., Gong, Y., Wei, A., Huang, T., Hou, S., Du, J., Li, Z., Wang, J., Liu, B.,Lan, Y., 2021. Adult-repopulating lymphoid potential of yolk sac blood vessels is not confined to arterial endothelial cells. Sci. China Life Sci. 64, 2073-2087.
    [34]
    Wang, F., Tan, P., Zhang, P., Ren, Y., Zhou, J., Li, Y., Hou, S., Li, S., Zhang, L., Ma, Y., et al., 2022. Single-cell architecture and functional requirement of alternative splicing during hematopoietic stem cell formation. Sci. Adv. 8, eabg5369.
    [35]
    Xu, W., Li, H., Dong, Z., Cui, Z., Zhang, N., Meng, L., Zhu, Y., Liu, Y., Li, Y., Guo, H., et al., 2016. Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination. Gene 592, 215-220.
    [36]
    Yamane, T., Hosen, N., Yamazaki, H.,Weissman, I.L., 2009. Expression of AA4.1 marks lymphohematopoietic progenitors in early mouse development. Proc. Natl. Acad. Sci. U. S. A. 106, 8953-8958.
    [37]
    Yokomizo, T., Ideue, T., Morino-Koga, S., Tham, C.Y., Sato, T., Takeda, N., Kubota, Y., Kurokawa, M., Komatsu, N., Ogawa, M., et al., 2022. Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature 609, 779-784.
    [38]
    Yoshimoto, M., Montecino-Rodriguez, E., Ferkowicz, M.J., Porayette, P., Shelley, W.C., Conway, S.J., Dorshkind, K.,Yoder, M.C., 2011. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc. Natl. Acad. Sci. U S A 108, 1468-1473.
    [39]
    Yoshimoto, M., Porayette, P., Glosson, N.L., Conway, S.J., Carlesso, N., Cardoso, A.A., Kaplan, M.H.,Yoder, M.C., 2012. Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119, 5706-5714.
    [40]
    Yoshimoto, M., Porayette, P.,Yoder, M.C., 2008. Overcoming obstacles in the search for the site of hematopoietic stem cell emergence. Cell Stem Cell 3, 583-586.
    [41]
    Yu, G., Wang, L.G., Han, Y.,He, Q.Y., 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284-287.
    [42]
    Yzaguirre, A.D.,Speck, N.A., 2016. Insights into blood cell formation from hemogenic endothelium in lesser-known anatomic sites. Dev. Dyn. 245, 1011-1028.
    [43]
    Zeng, Y., He, J., Bai, Z., Li, Z., Gong, Y., Liu, C., Ni, Y., Du, J., Ma, C., Bian, L., et al., 2019. Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res. 29, 881-894.
    [44]
    Zhou, F., Li, X., Wang, W., Zhu, P., Zhou, J., He, W., Ding, M., Xiong, F., Zheng, X., Li, Z., et al., 2016. Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533, 487-492.
    [45]
    Zhou, J., Xu, J., Zhang, L., Liu, S., Ma, Y., Wen, X., Hao, J., Li, Z., Ni, Y., Li, X., et al., 2019. Combined single-cell profiling of lncRNAs and functional screening reveals that H19 is pivotal for embryonic hematopoietic stem cell development. Cell Stem Cell 24, 285-298 e285.
    [46]
    Zhu, Q., Gao, P., Tober, J., Bennett, L., Chen, C., Uzun, Y., Li, Y., Howell, E.D., Mumau, M., Yu, W., et al., 2020. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood 136, 845-856.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (319) PDF downloads (27) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return