5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 9
Sep.  2023
Turn off MathJax
Article Contents

Microbiota-mediated shaping of mouse spleen structure and immune function characterized by scRNA-seq and Stereo-seq

doi: 10.1016/j.jgg.2023.04.012 cstr: 32370.14.j.jgg.2023.04.012
Funds:

This study was funded by the National Natural Science Foundation of China (81700436) and the Science Technology and Innovation Committee of Shenzhen Municipality, China (SGDX20190919142801722). We are grateful to the funding committee for supporting this project. We also thank all members of the project team for all their hard work. Thanks to the dissection staff for their assistance during the sampling process.

  • Received Date: 2023-01-12
  • Accepted Date: 2023-04-24
  • Rev Recd Date: 2023-04-23
  • Publish Date: 2023-05-06
  • Gut microbes exhibit complex interactions with their hosts and shape an organism's immune system throughout its lifespan. As the largest secondary lymphoid organ, the spleen has a wide range of immunological functions. To explore the role of microbiota in regulating and shaping the spleen, we employ scRNA-seq and Stereo-seq technologies based on germ-free (GF) mice to detect differences in tissue size, anatomical structure, cell types, functions, and spatial molecular characteristics. We identify 18 cell types, 9 subtypes of T cells, and 7 subtypes of B cells. Gene differential expression analysis reveals that the absence of microorganisms results in alterations in erythropoiesis within the red pulp region and congenital immune deficiency in the white pulp region. Stereo-seq results demonstrate a clear hierarchy of immune cells in the spleen, including marginal zone (MZ) macrophages, MZ B cells, follicular B cells and T cells, distributed in a well-defined pattern from outside to inside. However, this hierarchical structure is disturbed in GF mice. Ccr7 and Cxcl13 chemokines are specifically expressed in the spatial locations of T cells and B cells, respectively. We speculate that the microbiota may mediate the structural composition or partitioning of spleen immune cells by modulating the expression levels of chemokines.
  • loading
  • [1]
    Abu-Issa, R., Smyth, G., Smoak, I., Yamamura, K.,Meyers, E.N., 2002. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129, 4613-4625.
    [2]
    Alexandre, Y.O., Schienstock, D., Lee, H.J., Gandolfo, L.C., Williams, C.G., Devi, S., Pal, B., Groom, J.R., Cao, W.,Christo, S.N., 2022. A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity. Sci. Immunol. 7, eabj0641.
    [3]
    Altves, S., Yildiz, H.K., Vural, H.C.J.B.o.m., food,health, 2020. Interaction of the microbiota with the human body in health and diseases. Biosci. microbiota food health 39, 23-32.
    [4]
    Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T.,Ohba, Y.J.S., 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337-341.
    [5]
    Bellomo, A., Mondor, I., Spinelli, L., Lagueyrie, M., Stewart, B.J., Brouilly, N., Malissen, B., Clatworthy, M.R.,Bajenoff, M.J.I., 2020. Reticular fibroblasts expressing the transcription factor WT1 define a stromal niche that maintains and replenishes splenic red pulp macrophages. Immunity 53, 127-142. e127.
    [6]
    Bird, M.J.J.o.A., 1996. di Fiore's Atlas of Histology, with Functional Correlations. J. Anat. 189, 464.
    [7]
    Botia-Sanchez, M., Alarcon-Riquelme, M.E.,Galicia, G.J.I.J.o.M.S., 2021. B cells and microbiota in autoimmunity. Int. J. Mol. Sci. 22, 4846.
    [8]
    Cable, D.M., Murray, E., Zou, L.S., Goeva, A., Macosko, E.Z., Chen, F.,Irizarry, R.A.J.N.B., 2022. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517-526.
    [9]
    Calabro, S., Liu, D., Gallman, A., Nascimento, M.S., Yu, Z., Zhang, T.T., Chen, P., Zhang, B., Xu, L., Gowthaman, U., et al., 2016. Differential Intrasplenic Migration of Dendritic Cell Subsets Tailors Adaptive Immunity. Cell Rep. 16, 2472-2485.
    [10]
    Casals-Pascual, C., Vergara, A.,Vila, J.J.H.M.J., 2018. Intestinal microbiota and antibiotic resistance: Perspectives and solutions. Hum. Microbiome J. 9, 11-15.
    [11]
    Cash, H.L.,Hooper, L.V., 2005. Commensal bacteria shape intestinal immune system development. ASM news 71, 77-83.
    [12]
    Cenariu, D., Iluta, S., Zimta, A.-A., Petrushev, B., Qian, L., Dirzu, N., Tomuleasa, C., Bumbea, H.,Zaharie, F., 2021. Extramedullary hematopoiesis of the liver and spleen. J. Clin. Med. 10, 5831.
    [13]
    Crowl, J.T., Heeg, M., Ferry, A., Milner, J.J., Omilusik, K.D., Toma, C., He, Z., Chang, J.T.,Goldrath, A.W., 2022. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nat. Immunol. 23, 1121-1131.
    [14]
    Cui, J., Ramesh, G., Wu, M., Jensen, E.T., Crago, O., Bertoni, A.G., Gao, C., Hoffman, K.L., Sheridan, P.A.,Wong, K.E., 2022. Butyrate-Producing Bacteria and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES). Diabetes 71, 2438-2446.
    [15]
    Di Simone, S.K., Rudloff, I., Nold-Petry, C.A., Forster, S.C.,Nold, M.F., 2023. Understanding respiratory microbiome-immune system interactions in health and disease. Sci. Transl. Med. 15, eabq5126.
    [16]
    Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., Le, A., Cowan, T.M., Nolan, G.P.,Fischbach, M.A.J.N., 2017. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648-652.
    [17]
    Forster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Muller, I., Wolf, E.,Lipp, M.J.C., 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23-33.
    [18]
    Frazier, K.,Leone, V.A., 2022. Host-microbe circadian dynamics: Finding a rhythm and hitting a groove in scientific inquiry. Cell Host & Microbe 30, 458-462.
    [19]
    Gabay, O., Vicenty, J., Smith, D., Tiffany, L., Ascher, J., Curry, T., Dennis, J., Clouse, K.A.J.M.,Protocols, 2020. Using a model of germ-free animals to study the impact of gut microbiome in research: a step by step sterility setting and management. Methods Protoc. 3, 18.
    [20]
    Gaboriau-Routhiau, V., Rakotobe, S., Lecuyer, E., Mulder, I., Lan, A., Bridonneau, C., Rochet, V., Pisi, A., De Paepe, M.,Brandi, G.J.I., 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677-689.
    [21]
    Gaujoux, R., Starosvetsky, E., Maimon, N., Vallania, F., Bar-Yoseph, H., Pressman, S., Weisshof, R., Goren, I., Rabinowitz, K.,Waterman, M.J.G., 2019. Cell-centred meta-analysis reveals baseline predictors of anti-TNFα non-response in biopsy and blood of patients with IBD. Gut 68, 604-614.
    [22]
    Ghosn, E.E.B., Sadate-Ngatchou, P., Yang, Y., Herzenberg, L.A.,Herzenberg, L.A.J.P.o.t.N.A.o.S., 2011. Distinct progenitors for B-1 and B-2 cells are present in adult mouse spleen. Proc. Natl. Acad. Sci. 108, 2879-2884.
    [23]
    Golub, R., Tan, J., Watanabe, T.,Brendolan, A., 2018. Origin and Immunological Functions of Spleen Stromal Cells. Trends Immunol. 39, 503-514.
    [24]
    Hansson, J., Bosco, N., Favre, L., Raymond, F., Oliveira, M., Metairon, S., Mansourian, R., Blum, S., Kussmann, M.,Benyacoub, J.J.M.i., 2011. Influence of gut microbiota on mouse B2 B cell ontogeny and function. Mol. Immunol. 48, 1091-1101.
    [25]
    Hao, Y., Hao, S., Andersen-Nissen, E., Mauck III, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C.,Zager, M.J.C., 2021. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587. e3529.
    [26]
    Hilton, H.G., Rubinstein, N.D., Janki, P., Ireland, A.T., Bernstein, N., Fong, N.L., Wright, K.M., Smith, M., Finkle, D.,Martin-McNulty, B., 2019. Single-cell transcriptomics of the naked mole-rat reveals unexpected features of mammalian immunity. PLoS Biol. 17, e3000528.
    [27]
    Hu, C., Li, T., Xu, Y., Zhang, X., Li, F., Bai, J., Chen, J., Jiang, W., Yang, K.,Ou, Q.J.N.A.R., 2023. CellMarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 51, D870-D876.
    [28]
    Infante, A.J.,Kraig, E., 1999. Myasthenia gravis and its animal model: T cell receptor expression in an antibody mediated autoimmune disease. Int. Rev. Immunol. 18, 83-109.
    [29]
    Jia, Q., Li, H., Zhou, H., Zhang, X., Zhang, A., Xie, Y., Li, Y., Lv, S.,Zhang, J., 2019. Role and Effective Therapeutic Target of Gut Microbiota in Heart Failure. Cardiovasc. Ther. 2019, 5164298.
    [30]
    Jiao, X., Katiyar, S., Willmarth, N.E., Liu, M., Ma, X., Flomenberg, N., Lisanti, M.P.,Pestell, R.G.J.J.o.B.C., 2010. c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J. Biol. Chem. 285, 8218-8226.
    [31]
    Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., Plikus, M.V.,Nie, Q.J.N.c., 2021. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1-20.
    [32]
    Kim, M.B., Giesler, K.E., Tahirovic, Y.A., Truax, V.M., Liotta, D.C.,Wilson, L.J., 2016. CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV. Expert Opin Investig Drugs 25, 1377-1392.
    [33]
    Kimmel, J.C., Penland, L., Rubinstein, N.D., Hendrickson, D.G., Kelley, D.R.,Rosenthal, A.Z.J.G.r., 2019. Murine single-cell RNA-seq reveals cell-identity-and tissue-specific trajectories of aging. Genome Res. 29, 2088-2103.
    [34]
    Le Gallou, S., Zhou, Z., Thai, L.-H., Fritzen, R., de Los Aires, A.V., Megret, J., Yu, P., Kitamura, D., Bille, E.,Tros, F., 2018. A splenic IgM memory subset with antibacterial specificities is sustained from persistent mucosal responses. J. Exp. Med. 215, 2035-2053.
    [35]
    Le Roy, T., Lecuyer, E., Chassaing, B., Rhimi, M., Lhomme, M., Boudebbouze, S., Ichou, F., Haro Barcelo, J., Huby, T.,Guerin, M.J.B.b., 2019. The intestinal microbiota regulates host cholesterol homeostasis. BMC biology 17, 1-18.
    [36]
    Lewis, S.M., Williams, A.,Eisenbarth, S.C., 2019. Structure and function of the immune system in the spleen. Sci. Immunol. 4, eaau6085.
    [37]
    Li, H., Limenitakis, J.P., Greiff, V., Yilmaz, B., Scharen, O., Urbaniak, C., Zund, M., Lawson, M.A., Young, I.D.,Rupp, S.J.N., 2020. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584, 274-278.
    [38]
    Li, W.Z., Stirling, K., Yang, J.J.,Zhang, L., 2020b. Gut microbiota and diabetes: From correlation to causality and mechanism. World J. Diabetes 11, 293-308.
    [39]
    Liu, H.-Y., Gu, F., Zhu, C., Yuan, L., Zhu, C., Zhu, M., Yao, J., Hu, P., Zhang, Y.,Dicksved, J.J.F.i.i., 2022. Epithelial Heat Shock Proteins Mediate the Protective Effects of Limosilactobacillus reuteri in Dextran Sulfate Sodium-Induced Colitis. Front. Immunol. 13.
    [40]
    Liu, L., Wang, H., Chen, X., Zhang, Y., Zhang, H.,Xie, P., 2023. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 90.
    [41]
    Ma, Y.,Zhou, X., 2022. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 40, 1349-1359.
    [42]
    Macpherson, A.J.,Harris, N.L.J.N.R.I., 2004. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478-485.
    [43]
    Madissoon, E., Wilbrey-Clark, A., Miragaia, R., Saeb-Parsy, K., Mahbubani, K., Georgakopoulos, N., Harding, P., Polanski, K., Huang, N.,Nowicki-Osuch, K.J.G.b., 2020. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1-16.
    [44]
    Masenga, S.K., Hamooya, B., Hangoma, J., Hayumbu, V., Ertuglu, L.A., Ishimwe, J., Rahman, S., Saleem, M., Laffer, C.L.,Elijovich, F., 2022. Recent advances in modulation of cardiovascular diseases by the gut microbiota. Nat. Rev. Immunol. 1-8.
    [45]
    Mazmanian, S.K., Liu, C.H., Tzianabos, A.O.,Kasper, D.L., 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107-118.
    [46]
    McHeyzer-Williams, M., Okitsu, S., Wang, N.,McHeyzer-Williams, L.J.N.R.I., 2012. Molecular programming of B cell memory. Nat. Rev. Immunol. 12, 24-34.
    [47]
    Mebius, R.E.,Kraal, G.J.N.r.i., 2005. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606-616.
    [48]
    Miyauchi, E., Shimokawa, C., Steimle, A., Desai, M.S.,Ohno, H., 2023. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat. Rev. Immunol. 23, 9-23.
    [49]
    Mogilenko, D.A., Shpynov, O., Andhey, P.S., Arthur, L., Swain, A., Esaulova, E., Brioschi, S., Shchukina, I., Kerndl, M.,Bambouskova, M., 2021. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54, 99-115. e112.
    [50]
    Moncada, R., Barkley, D., Wagner, F., Chiodin, M., Devlin, J.C., Baron, M., Hajdu, C.H., Simeone, D.M.,Yanai, I.J.N.b., 2020. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333-342.
    [51]
    Moran, N.A., McCutcheon, J.P.,Nakabachi, A.J.A.r.o.g., 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165-190.
    [52]
    Nikolaou, C., Muehle, K., Schlickeiser, S., Japp, A.S., Matzmohr, N., Kunkel, D., Frentsch, M.,Thiel, A., 2021. High-dimensional single cell mass cytometry analysis of the murine hematopoietic system reveals signatures induced by ageing and physiological pathogen challenges. Immunity & Ageing 18, 1-19.
    [53]
    Norman, P.S., 1995. Immunobiology: The immune system in health and disease. J. Allergy Clin. Immunol. 96, 274.
    [54]
    Pabst, O., Herbrand, H., Friedrichsen, M., Velaga, S., Dorsch, M., Berhardt, G., Worbs, T., Macpherson, A.J.,Förster, R.J.T.J.o.I., 2006. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J. Immunol. 177, 6824-6832.
    [55]
    Pagliari, D., Saviano, A., Newton, E.E., Serricchio, M.L., Dal Lago, A.A., Gasbarrini, A.,Cianci, R., 2018. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders. Mediators Inflamm. 2018, 7946431.
    [56]
    Pantoja-Feliciano, I.G., Karl, J.P., Perisin, M., Doherty, L.A., McClung, H.L., Armstrong, N.J., Renberg, R., Racicot, K., Branck, T.,Arcidiacono, S., 2023. In vitro gut microbiome response to carbohydrate supplementation is acutely affected by a sudden change in diet. BMC Microbiol. 23, 1-15.
    [57]
    Pezoldt, J., Wiechers, C., Erhard, F., Rand, U., Bulat, T., Beckstette, M., Brendolan, A., Huehn, J., Kalinke, U.,Mueller, M., 2021. Single-cell transcriptional profiling of splenic fibroblasts reveals subset-specific innate immune signatures in homeostasis and during viral infection. Commun. Biol. 4, 1355.
    [58]
    Qi, X., Yun, C., Pang, Y.,Qiao, J., 2021. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 13, 1-21.
    [59]
    Robertson, R.C., Edens, T.J., Carr, L., Mutasa, K., Gough, E.K., Evans, C., Geum, H.M., Baharmand, I., Gill, S.K.,Ntozini, R., 2023. The gut microbiome and early-life growth in a population with high prevalence of stunting. Nat. Commun. 14, 654.
    [60]
    Rosado, M.M., Aranburu, A., Scarsella, M., Cascioli, S., Giorda, E., Del Chierico, F., Mortera, S.L., Mortari, E.P., Petrini, S.,Putignani, L.J.I.L., 2018. Spleen development is modulated by neonatal gut microbiota. Immunol. Lett. 199, 1-15.
    [61]
    Roslund, M.I., Puhakka, R., Gronroos, M., Nurminen, N., Oikarinen, S., Gazali, A.M., Cinek, O., Kramna, L., Siter, N.,Vari, H.K.J.S.a., 2020. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, eaba2578.
    [62]
    Schaupp, L., Muth, S., Rogell, L., Kofoed-Branzk, M., Melchior, F., Lienenklaus, S., Ganal-Vonarburg, S.C., Klein, M., Guendel, F., Hain, T., et al., 2020. Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells. Cell 181, 1080-1096 e1019.
    [63]
    Schlechte, J., Zucoloto, A.Z., Yu, I.-l., Doig, C.J., Dunbar, M.J., McCoy, K.D.,McDonald, B., 2023. Dysbiosis of a microbiota-immune metasystem in critical illness is associated with nosocomial infections. Nat. Med. 1-11.
    [64]
    Secchi, M., Grampa, V.,Vangelista, L., 2018. Rational CCL5 mutagenesis integration in a lactobacilli platform generates extremely potent HIV-1 blockers. Sci. Rep. 8, 1890.
    [65]
    Shim, J.A., Ryu, J.H., Jo, Y.,Hong, C., 2023. The role of gut microbiota in T cell immunity and immune mediated disorders. Int. J. Biol. Chem. Sci. 19, 1178-1191.
    [66]
    Takahashi, K., Sugi, Y., Nakano, K., Kobayakawa, T., Nakanishi, Y., Tsuda, M., Hosono, A.,Kaminogawa, S.J.I., 2020. Regulation of gene expression through gut microbiota-dependent DNA methylation in colonic epithelial cells. ImmunoHorizons 4, 178-190.
    [67]
    Topchyan, P., Zander, R., Kasmani, M.Y., Nguyen, C., Brown, A., Lin, S., Burns, R.,Cui, W., 2022. Spatial transcriptomics demonstrates the role of CD4 T cells in effector CD8 T cell differentiation during chronic viral infection. Cell Rep. 41, 111736.
    [68]
    Troy, E.B.,Kasper, D.L., 2010. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front. Biosci. - Landmark 15, 25-34.
    [69]
    Udou, T., Hachisuga, T., Tsujioka, H., Kawarabayashi, T.J.G.,investigation, o., 2004. The role of c-jun protein in proliferation and apoptosis of the endometrium throughout the menstrual cycle. Gynecol. Obstet. Investig. 57, 121-126.
    [70]
    Villanueva, R.A.M.,Chen, Z.J. 2019. ggplot2: elegant graphics for data analysis. Taylor & Francis. 160-167.
    [71]
    Vinolo, M.A., Rodrigues, H.G., Nachbar, R.T.,Curi, R., 2011. Regulation of inflammation by short chain fatty acids. Nutrients 3, 858-876.
    [72]
    Wang, H., Xu, R., Zhang, H., Su, Y.,Zhu, W., 2020. Swine gut microbiota and its interaction with host nutrient metabolism. Anim. Nutr. 6, 410-420.
    [73]
    Wang, R., Zhang, P., Wang, J., Ma, L., E, W., Suo, S., Jiang, M., Li, J., Chen, H.,Sun, H., 2023. Construction of a cross-species cell landscape at single-cell level. Nucleic Acids Res. 51, 501-516.
    [74]
    Wu, H.-J.,Wu, E.J.G.m., 2012. The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes 3, 4-14.
    [75]
    Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W.,Zhan, L.J.T.I., 2021. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, 100141.
    [76]
    Wu, X., Jiang, N., Deppong, C., Singh, J., Dolecki, G., Mao, D., Morel, L.,Molina, H.D., 2002. A role for the Cr2 gene in modifying autoantibody production in systemic lupus erythematosus. J. Immunol. 169, 1587-1592.
    [77]
    Xu, H., Ding, J., Porter, C.B., Wallrapp, A., Tabaka, M., Ma, S., Fu, S., Guo, X., Riesenfeld, S.J.,Su, C.J.I., 2019. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. Immunity 51, 696-708. e699.
    [78]
    Yan, F.J.C., Gastroenterology, M.,Hepatology, 2020. Mechanistic understanding of the symbiotic relationship between the gut microbiota and the host: An avenue toward therapeutic applications. Cell. Mol. Gastroenterol. Hepatol. 10, 853.
    [79]
    Yang, W.,Cong, Y., 2021. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 18, 866-877.
    [80]
    Zhang, D., Gao, X., Li, H., Borger, D.K., Wei, Q., Yang, E., Xu, C., Pinho, S.,Frenette, P.S.J.C.S.C., 2022. The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell 29, 232-247. e237.
    [81]
    Zhang, G.X., Navikas, V.,Link, H., 1997. Cytokines and the pathogenesis of myasthenia gravis. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine 20, 543-551.
    [82]
    Zhang, H., Chen, X.,Sairam, M.J.D., 2011. Novel hormone-regulated genes in visceral adipose tissue: cloning and identification of proinflammatory cytokine-like mouse and human MEDA-7: implications for obesity, insulin resistance and the metabolic syndrome. Diabetologia 54, 2368-2380.
    [83]
    Zhao, E., Stone, M.R., Ren, X., Guenthoer, J., Smythe, K.S., Pulliam, T., Williams, S.R., Uytingco, C.R., Taylor, S.E.,Nghiem, P., 2021. Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39, 1375-1384.
    [84]
    Zheng, Z., He, H., Tang, X.T., Zhang, H., Gou, F., Yang, H., Cao, J., Shi, S., Yang, Z., Sun, G., et al., 2022. Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell 29, 1562-1579 e1567.
    [85]
    Zhu, L., Yang, P., Zhao, Y., Zhuang, Z., Wang, Z., Song, R., Zhang, J., Liu, C., Gao, Q.,Xu, Q., 2020. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity 53, 685-696. e683.
    [86]
    Zlotnik, A.,Yoshie, O., 2012. The chemokine superfamily revisited. Immunity 36, 705-716.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (550) PDF downloads (58) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return