[1] |
Asp, M., Giacomello, S., Larsson, L., Wu, C., Furth, D., Qian, X., Wardell, E., Custodio, J., Reimegard, J., Salmen, F., et al., 2019. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647-1660.
|
[2] |
Burtsev, S.V.,Kuzmin, Y.P., 1993. An efficient flood-filling algorithm. Comput. Graph. 17, 549-561.
|
[3] |
Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S., et al., 2022a. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777-1792.
|
[4] |
Chen, X., Fischer, S., Zhang, A., Gillis, J.,Zador, A.M., 2022b. Modular cell type organization of cortical areas revealed by in situ sequencing. BioRxiv. https://doi.org/10.1101/2022.11.06.515380.
|
[5] |
Cho, C.S., Xi, J., Si, Y., Park, S.R., Hsu, J.E., Kim, M., Jun, G., Kang, H.M.,Lee, J.H., 2021. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559-3572.
|
[6] |
Costa, M., Manton, J.D., Ostrovsky, A.D., Prohaska, S.,Jefferis, G.S., 2016. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases. Neuron 91, 293-311.
|
[7] |
Dries, R., Zhu, Q., Dong, R., Eng, C.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., Bao, F., et al., 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78.
|
[8] |
Fang, S., Chen, B., Zhang, Y., Sun, H., Liu, L., Liu, S., Li, Y.,Xu, X., 2022. Computational approaches and challenges in spatial transcriptomics. Genomics Proteomics Bioinformatics.
|
[9] |
Fernandez Navarro, J., Lundeberg, J.,Stahl, P.L., 2019. ST viewer: a tool for analysis and visualization of spatial transcriptomics datasets. Bioinformatics 35, 1058-1060.
|
[10] |
Griffith, L.G.,Swartz, M.A., 2006. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211-224.
|
[11] |
Han, X., Zhou, Z., Fei, L., Sun, H., Wang, R., Chen, Y., Chen, H., Wang, J., Tang, H., Ge, W., et al., 2020. Construction of a human cell landscape at single-cell level. Nature 581, 303-309.
|
[12] |
Ho, J.L., Konda, A., Rahman, J., Harris, E., Korn, R., Sabir, A., Bawany, B., Gulati, R., Harris, G.J., Boswell, W.D., et al., 2020. Comparative analysis of three-dimensional volume rendering and maximum intensity projection for preoperative planning in liver cancer. Eur. J. Radiol. Open 7, 100259.
|
[13] |
Law, J., Morris, D.E., Izzi-Engbeaya, C., Salem, V., Coello, C., Robinson, L., Jayasinghe, M., Scott, R., Gunn, R., Rabiner, E., et al., 2018. Thermal Imaging Is a Noninvasive Alternative to PET/CT for Measurement of Brown Adipose Tissue Activity in Humans. J. Nucl. Med. 59, 516-522.
|
[14] |
Li, B., Gould, J., Yang, Y., Sarkizova, S., Tabaka, M., Ashenberg, O., Rosen, Y., Slyper, M., Kowalczyk, M.S., Villani, A.C., et al., 2020. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793-798.
|
[15] |
Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., Zu, M.,Chen, W., 2018. ECharts: A declarative framework for rapid construction of web-based visualization. Vis. Inform. 2, 136-146.
|
[16] |
Liu, X., Zeira, R.,Raphael, B.J., 2023. PASTE2: Partial Alignment of Multi-slice Spatially Resolved Transcriptomics Data. BioRxiv.
|
[17] |
Marshall, J.L., Noel, T., Wang, Q.S., Chen, H., Murray, E., Subramanian, A., Vernon, K.A., Bazua-Valenti, S., Liguori, K., Keller, K., et al., 2022. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 25, 104097.
|
[18] |
Moffitt, J.R., Bambah-Mukku, D., Eichhorn, S.W., Vaughn, E., Shekhar, K., Perez, J.D., Rubinstein, N.D., Hao, J., Regev, A., Dulac, C., et al., 2018. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362.
|
[19] |
Moses, L.,Pachter, L., 2022. Museum of spatial transcriptomics. Nat. Methods 19, 534-546.
|
[20] |
Nobori, T., Oliva, M., Lister, R.,Ecker, J.R., 2022. PHYTOMap: Multiplexed single-cell 3D spatial gene expression analysis in plant tissue. BioRxiv.
|
[21] |
Ortiz, C., Navarro, J.F., Jurek, A., Martin, A., Lundeberg, J.,Meletis, K., 2020. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446.
|
[22] |
Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A.C., Kuemmerle, L.B., Rybakov, S., Ibarra, I.L., Holmberg, O., Virshup, I., et al., 2022. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171-178.
|
[23] |
Peng, H., Ruan, Z., Long, F., Simpson, J.H.,Myers, E.W., 2010. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348-353.
|
[24] |
Pinter, C., Lasso, A.,Fichtinger, G., 2019. Polymorph segmentation representation for medical image computing. Comput. Methods Programs Biomed. 171, 19-26.
|
[25] |
Qiu, X., Zhu, D.Y., Yao, J., Jing, Z., Zuo, L., Wang, M., Min, K.H., Pan, H., Wang, S., Liao, S., et al., 2022. Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics. BioRxiv.
|
[26] |
Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F.,Macosko, E.Z., 2019. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463-1467.
|
[27] |
Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J.E., Ashenberg, O., Cerami, E., Coffey, R.J., Demir, E., et al., 2020. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell 181, 236-249.
|
[28] |
Sullivan, C.B.,Kaszynski, A.A., 2019. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). J. Open Source Softw. 4, 1450.
|
[29] |
Sun, D., Liu, Z., Li, T., Wu, Q.,Wang, C., 2022. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res. 50, e42.
|
[30] |
Wallis, J.W., Miller, T.R., Lerner, C.A.,Kleerup, E.C., 1989. Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8, 297-230.
|
[31] |
Wang, G., Zhao, J., Yan, Y., Wang, Y., Wu, A.R.,Yang, C., 2023. Construction of a 3D whole organism spatial atlas by joint modeling of multiple slices. BioRxiv.
|
[32] |
Wang, M., Hu, Q., Lv, T., Wang, Y., Lan, Q., Xiang, R., Tu, Z., Wei, Y., Han, K., Shi, C., et al., 2022. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. Dev. Cell 57, 1271-1283 e1274.
|
[33] |
Wang, X., Allen, W.E., Wright, M.A., Sylwestrak, E.L., Samusik, N., Vesuna, S., Evans, K., Liu, C., Ramakrishnan, C., Liu, J., et al., 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361.
|
[34] |
Waylen, L.N., Nim, H.T., Martelotto, L.G.,Ramialison, M., 2020. From whole-mount to single-cell spatial assessment of gene expression in 3D. Commun. Biol. 3, 602.
|
[35] |
Wei, R., He, S., Bai, S., Sei, E., Hu, M., Thompson, A., Chen, K., Krishnamurthy, S.,Navin, N.E., 2022. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40, 1190-1199.
|
[36] |
Wolf, F.A., Angerer, P.,Theis, F.J., 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15.
|
[37] |
Xu, Z., Wang, W., Yang, T., Chen, J., Huang, Y., Gould, J., Du, W., Yang, F., Li, L., Lai, T., et al., 2022. STOmicsDB: a database of Spatial Transcriptomic data. BioRxiv.
|
[38] |
Yuan, Z., Pan, W., Zhao, X., Zhao, F., Xu, Z., Li, X., Zhao, Y., Zhang, M.Q.,Yao, J., 2023. SODB facilitates comprehensive exploration of spatial omics data. Nat. Methods 20, 387-399.
|
[39] |
Zeira, R., Land, M., Strzalkowski, A.,Raphael, B.J., 2022. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567-575.
|