[1] |
Anderson, G.J., and Vulpe, C.D. 2009. Mammalian iron transport. Cell. Mol. Life Sci. 66, 3241-3261.
|
[2] |
Ashraf, A., Jeandriens, J., Parkes, H.G., So, P.W. 2020. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: evidence of ferroptosis. Redox Biol. 32, 101494.
|
[3] |
Bai, X., Huang, L.J., Chen, S.W., Nebenfuhr, B., Wysolmerski, B., Wu, J.C., Olson, S.K., Golden, A., Wang, C.W. 2020. Loss of the seipin gene perturbs eggshell formation in Caenorhabditis elegans. Development 147, dev.192997.
|
[4] |
Best, J.T., Xu, P., and Graham, T.R. 2019. Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Curr. Opin. Cell Biol. 59, 8-15.
|
[5] |
Boumann, H.A., Gubbens, J., Koorengevel, M.C., Oh, C.S., Martin, C.E., Heck, A.J., Patton-Vogt, J., Henry, S.A., de Kruijff, B., de Kroon, A.I. 2006. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. Mol. Biol. Cell 17, 1006-1017.
|
[6] |
Chavez, V., Mohri-Shiomi, A., Garsin, D.A. 2009. Ce-Duox1/BLI-3 generates reactive oxygen species as a protective innate immune mechanism in Caenorhabditis elegans. Infect. Immun. 77, 4983-4989.
|
[7] |
Dermaut, B., Norga, K.K., Kania, A., Verstreken, P., Pan, H., Zhou, Y., Callaerts, P., Bellen, H.J. 2005. Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. J. Cell Biol. 170, 127-139.
|
[8] |
Di Paolo, G., and De Camilli, P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651-657.
|
[9] |
Dierge, E., Debock, E., Guilbaud, C., Corbet, C., Mignolet, E., Mignard, L., Bastien, E., Dessy, C., Larondelle, Y., Feron, O. 2021. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701-1715.
|
[10] |
Do Van, B., Gouel, F., Jonneaux, A., Timmerman, K., Gele, P., Petrault, M., Bastide, M., Laloux, C., Moreau, C., Bordet, R., et al., 2016. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiol. Dis. 94, 169-178.
|
[11] |
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., et al., 2017. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91-98.
|
[12] |
Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., Lin, X., Watkins, S.M., Ivanov, A.R., Hotamisligil, G.S. 2011. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528-531.
|
[13] |
Gao, M., Monian, P., Quadri, N., Ramasamy, R., Jiang, X. 2015. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298-308.
|
[14] |
Gao, M., Yi, J., Zhu, J., Minikes, A.M., Monian, P., Thompson, C.B., Jiang, X. 2019. Role of mitochondria in ferroptosis. Mol. Cell 73, 354-363.
|
[15] |
Gao, M.H., Monian, P., Pan, Q.H., Zhang, W., Xiang, J., Jiang, X.J. 2016. Ferroptosis is an autophagic cell death process. Cell Res. 26, 1021-1032.
|
[16] |
Giese, G.E., Walker, M.D., Ponomarova, O., Zhang, H., Li, X., Minevich, G., Walhout, A.J. 2020. Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. Elife 9, e60259.
|
[17] |
Gracida, X., and Eckmann, C.R. 2013. Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr. Biol. 23, 607-613.
|
[18] |
Haider, A., Wei, Y.C., Lim, K., Barbosa, A.D., Liu, C.H., Weber, U., Mlodzik, M., Oras, K., Collier, S., Hussain, M.M., et al., 2018. PCYT1A regulates phosphatidylcholine homeostasis from the inner nuclear membrane in response to membrane stored curvature elastic stress. Dev. Cell 45, 481-495.
|
[19] |
Han, M., Chang, H., Zhang, P., Chen, T., Zhao, Y., Zhang, Y., Liu, P., Xu, T., Xu, P. 2013. C13C4.5/Spinster, an evolutionarily conserved protein that regulates fertility in C. elegans through a lysosome-mediated lipid metabolism process. Protein Cell 4, 364-372.
|
[20] |
He, M., Kuk, A.C.Y., Ding, M., Chin, C.F., Galam, D.L.A., Nah, J.M., Tan, B.C., Yeo, H.L., Chua, G.L., Benke, P.I., et al., 2022. Spns1 is a lysophospholipid transporter mediating lysosomal phospholipid salvage. Proc. Natl. Acad. Sci. U. S. A. 119, e2210353119.
|
[21] |
Hebbar, S., Khandelwal, A., Jayashree, R., Hindle, S.J., Chiang, Y.N., Yew, J.Y., Sweeney, S.T., Schwudke, D. 2017. Lipid metabolic perturbation is an early-onset phenotype in adult spinster mutants: a Drosophila model for lysosomal storage disorders. Mol. Biol. Cell 28, 3728-3740.
|
[22] |
Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., 3rd, Kang, R., Tang, D. 2016. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425-1428.
|
[23] |
Hubbard, E.J., and Greenstein, D. 2005. Introduction to the germ line. WormBook 2005, 1-4.
|
[24] |
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
|
[25] |
Kahn-Kirby, A.H., Dantzker, J.L., Apicella, A.J., Schafer, W.R., Browse, J., Bargmann, C.I., Watts, J.L. 2004. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119, 889-900.
|
[26] |
Kim, S.E., Zhang, L., Ma, K., Riegman, M., Chen, F., Ingold, I., Conrad, M., Turker, M.Z., Gao, M., Jiang, X., et al., 2016. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977-985.
|
[27] |
Lee, H., Zhuang, L., Gan, B. 2021. Ether phospholipids govern ferroptosis. J. Genet. Genomics 48, 517-519.
|
[28] |
Li, Y., Chen, B., Zou, W., Wang, X., Wu, Y., Zhao, D., Sun, Y., Liu, Y., Chen, L., Miao, L., et al., 2016. The lysosomal membrane protein SCAV-3 maintains lysosome integrity and adult longevity. J. Cell Biol. 215, 167-185.
|
[29] |
Li, Z., Agellon, L.B., Allen, T.M., Umeda, M., Jewell, L., Mason, A., Vance, D.E. 2006. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 3, 321-331.
|
[30] |
Liang, B., and Watts, J.L. 2022. Less is more: seipin, phospholipids, and embryogenesis. Life Metab., DOI: 10.1093/lifemeta/loac1023/6702617.
|
[31] |
Liu, Z.L., Li, X., Ge, Q.L., Ding, M., Huang, X. 2014. A lipid droplet-associated GFP reporter-based screen identifies new fat storage regulators in C. elegans. J. Genet. Genomics 41, 305-313.
|
[32] |
Madeira, F., Pearce, M., Tivey, A.R.N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., Lopez, R. 2022. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276-W279.
|
[33] |
Mandal, P.K., Seiler, A., Perisic, T., Kolle, P., Banjac Canak, A., Forster, H., Weiss, N., Kremmer, E., Lieberman, M.W., Bannai, S., et al., 2010. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J. Biol. Chem. 285, 22244-22253.
|
[34] |
Mumbauer, S., Pascual, J., Kolotuev, I., Hamaratoglu, F. 2019. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet. 15, e1008396.
|
[35] |
Nakano, Y., Fujitani, K., Kurihara, J., Ragan, J., Usui-Aoki, K., Shimoda, L., Lukacsovich, T., Suzuki, K., Sezaki, M., Sano, Y., et al., 2001. Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol. Cell Biol. 21, 3775-3788.
|
[36] |
Payne, F., Lim, K., Girousse, A., Brown, R.J., Kory, N., Robbins, A., Xue, Y., Sleigh, A., Cochran, E., Adams, C., et al., 2014. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc. Natl. Acad. Sci. U. S. A. 111, 8901-8906.
|
[37] |
Perez, M.A., Magtanong, L., Dixon, S.J., Watts, J.L. 2020. Dietary lipids induce ferroptosis in Caenorhabditis elegans and human cancer cells. Dev. Cell 54, 447-454.
|
[38] |
Pinot, M., Vanni, S., Pagnotta, S., Lacas-Gervais, S., Payet, L.A., Ferreira, T., Gautier, R., Goud, B., Antonny, B., Barelli, H. 2014. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 345, 693-697.
|
[39] |
Qin, S., Wang, Y., Li, L., Liu, J., Xiao, C., Duan, D., Hao, W., Qin, C., Chen, J., Yao, L., et al., 2022. Early-life vitamin B12 orchestrates lipid peroxidation to ensure reproductive success via SBP-1/SREBP1 in Caenorhabditis elegans. Cell Rep. 40, 111381.
|
[40] |
Rong, Y., McPhee, C.K., Deng, S., Huang, L., Chen, L., Liu, M., Tracy, K., Baehrecke, E.H., Yu, L., Lenardo, M.J. 2011. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc. Natl. Acad. Sci. U. S. A. 108, 7826-7831.
|
[41] |
Sasaki, T., Lian, S., Qi, J., Bayliss, P.E., Carr, C.E., Johnson, J.L., Guha, S., Kobler, P., Catz, S.D., Gill, M., et al., 2014. Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet. 10, e1004409.
|
[42] |
Sehnal, D., Bittrich, S., Deshpande, M., Svobodova, R., Berka, K., Bazgier, V., Velankar, S., Burley, S.K., Koca, J., Rose, A.S. 2021. Mol∗ Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 49, W431-W437.
|
[43] |
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., Fulda, S., Gascon, S., Hatzios, S.K., Kagan, V.E., et al., 2017. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273-285.
|
[44] |
Sun, L., Zeng, X., Yan, C., Sun, X., Gong, X., Rao, Y., Yan, N. 2012. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490, 361-366.
|
[45] |
Sun, Y., Li, M., Zhao, D., Li, X., Yang, C., Wang, X. 2020. Lysosome activity is modulated by multiple longevity pathways and is important for lifespan extension in C. elegans. Elife 9, e55745.
|
[46] |
Vanni, S., Hirose, H., Barelli, H., Antonny, B., Gautier, R. 2014. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 5, 4916.
|
[47] |
Walker, A.K., Jacobs, R.L., Watts, J.L., Rottiers, V., Jiang, K., Finnegan, D.M., Shioda, T., Hansen, M., Yang, F., Niebergall, L.J., et al., 2011. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147, 840-852.
|
[48] |
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296-W303.
|
[49] |
Watson, E., MacNeil, L.T., Ritter, A.D., Yilmaz, L.S., Rosebrock, A.P., Caudy, A.A., Walhout, A.J. 2014. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 759-770.
|
[50] |
Wei, W., and Ruvkun, G. 2020. Lysosomal activity regulates Caenorhabditis elegans mitochondrial dynamics through vitamin B12 metabolism. Proc. Natl. Acad. Sci. U. S. A. 117, 19970-19981.
|
[51] |
Yang, L., Liang, J., Lam, S.M., Yavuz, A., Shui, G., Ding, M., Huang, X. 2020. Neuronal lipolysis participates in PUFA-mediated neural function and neurodegeneration. EMBO Rep. 21, e50214.
|
[52] |
Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S., Stockwell, B.R. 2016. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. U. S. A. 113, E4966-E4975.
|
[53] |
Yang, X., Liang, J., Ding, L., Li, X., Lam, S.M., Shui, G., Ding, M., Huang, X. 2019. Phosphatidylserine synthase regulates cellular homeostasis through distinct metabolic mechanisms. PLoS Genet. 15, e1008548.
|
[54] |
Zhai, G., Song, J., Shu, T., Yan, J., Jin, X., He, J., Yin, Z. 2017. LRH-1 senses signaling from phosphatidylcholine to regulate the expansion growth of digestive organs via synergy with Wnt/beta-catenin signaling in zebrafish. J. Genet. Genomics 44, 307-317.
|
[55] |
Zheng, J., and Conrad, M. 2020. The metabolic underpinnings of ferroptosis. Cell Metab. 32, 920-937.
|
[56] |
Zhu, J., Lam, S.M., Yang, L., Liang, J., Ding, M., Shui, G., Huang, X. 2022. Reduced phosphatidylcholine synthesis suppresses the embryonic lethality of seipin deficiency. Life Metab., DOI: 10.1093/lifemeta/loac1021.
|
[57] |
Zou, Y., Henry, W.S., Ricq, E.L., Graham, E.T., Phadnis, V.V., Maretich, P., Paradkar, S., Boehnke, N., Deik, A.A., Reinhardt, F., et al., 2020. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603-608.
|