5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 7
Jul.  2023
Turn off MathJax
Article Contents

Heterotrimeric G protein γ subunit DEP1 synergistically regulates grain quality and yield by modulating the TTP (TON1-TRM-PP2A) complex in rice

doi: 10.1016/j.jgg.2023.02.009
Funds:

This work was supported by grants from the National Key Research and Development Program of China (2022YFF1002900), the National Natural Science Foundation of China (31971916, 31701332, 32172015), the Youth Innovation Promotion Association, Chinese Academy of Sciences (2019-100), and the Postdoctoral Science Foundation of China (2018T110152).

  • Received Date: 2023-01-07
  • Accepted Date: 2023-02-23
  • Rev Recd Date: 2023-02-22
  • Publish Date: 2023-07-28
  • loading
  • [1]
    Drevensek S, Goussot M, Duroc Y, Christodoulidou A, Steyaert S, Schaefer E, Duvernois E, Grandjean O, Vantard M, Bouchez D et al., 2012. The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell 24, 178-191.
    [2]
    Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., Zhang, Q., 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, e1164-e1171.
    [3]
    Huang, H., Ye, Y,. Song, W., Li, Q., Han, R., Wu, C., Wang, S., Yu, J., Liu, X., Fu, X., et al., 2022. Modulating the C-terminus of DEP1 synergistically enhances grain quality and yield in rice. J. Genet. Genomics. 49, 506-509.
    [4]
    Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J., Fu, X., 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, e494-e497.
    [5]
    Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI. 2006. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133, 4305-4314.
    [6]
    Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., Shao, D., Xu, C., Li, X., Xiao, J., et al., 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, e1266-e1269.
    [7]
    Liu, J., Chen, J., Zheng, X., Wu, F., Lin, Q., Heng, Y., Tian, P., Cheng, Z., Yu, X., Zhou, K., et al., 2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Native Plants 3, 17043.
    [8]
    Liu, Q., Han, R.X., Wu, K., Zhang, J.Q., Ye, Y.F., Wang, S.S., Chen, J.F., Pan, Y.J., Li, Q., Xu, X.P., et al., 2018. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat. Commun. 9, 852.
    [9]
    Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., Zhou, T., Lu, T., Zhu, J., Shangguan, Y., et al., 2016. OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48, e447-e456.
    [10]
    Spinner, L., Gadeyne, A., Belcram, K., Goussot, M., Moison, M., Duroc, Y., Eeckhout, D., De Winne, N., Schaefer, E., Van De Slijke, E., et al., 2013. A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 4, 1863.
    [11]
    Sun, S., Wang, L., Mao, H., Shao, L., Li, X., Xiao, J., Ouyang, Y., Zhang, Q., 2018. A G-protein pathway determines grain size in rice. Nat. Commun. 9, 851.
    [12]
    Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., Wang, Y., Chen, X., Zhang, Y., Gao, C., et al., 2015a. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47, e949-e954.
    [13]
    Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., Zeng, R., Zhu, H., Dong, G., Qian, Q., et al., 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, e950-e954.
    [14]
    Wang, Y.X., Xiong, G.S., Hu, J., Jiang, L., Yu, H., Xu, J., Fang, Y.X., Zeng, L.J., Xu, E.B., Xu, J., et al., 2015b. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47, e944-e948.
    [15]
    Wu, W., Liu, X., Wang, M., Meyer, R.S., Luo, X., Ndjiondjop, M.N., Tan, L., Zhang, J., Wu, J., Cai, H., et al. 2017. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Native Plants 3, 17064.
    [16]
    Xu, Q., Zhao, M., Wu, K., Fu, X., Liu, Q., 2016. Emerging insights into heterotrimeric G protein signaling in plants. J. Genet. Genomics 43, e495-e502.
    [17]
    Yang, W., Xu, P., Zhang, J., Zhang, S., Li, Z., Yang, K., Chang, X., Li, Y. 2022. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice. J. Genet. Genomics. 49, 414-426.
    [18]
    Zhan, P., Ma, S., Xiao, Z., Li, F., Wei, X., Lin, S., Wang, X., Ji, Z., Fu, Y., Pan, J., et al. 2022. Natural variations in grain length 10 (GL10) regulate rice grain size. J. Genet. Genomics. 49, 405-413.
    [19]
    Zhao, D.S., Li, Q.F., Zhang, C.Q., Zhang, C., Yang, Q.Q., Pan, L.X., Ren, X.Y., Lu, J., Gu, M.H., Liu Q.Q. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 9, 1240.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (466) PDF downloads (102) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return