5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 7
Jul.  2023
Turn off MathJax
Article Contents

Delta.EPI: a probabilistic voting-based enhancer-promoter interaction prediction platform

doi: 10.1016/j.jgg.2023.02.006
Funds:

This work was supported by Special Investigation on Science and Technology Basic Resources of MOST, China (2019FY100102), the Science and Technology Innovation 2030 – Major Project (2022ZD04017), the National Key R&D Program of China (2018YFC2000400), the National Natural Science Foundation of China (31871331, 31671342, 91940304), and the Beijing Natural Science Foundation (Z200021).

  • Received Date: 2022-11-22
  • Accepted Date: 2023-02-10
  • Rev Recd Date: 2023-01-20
  • Publish Date: 2023-07-28
  • Enhancer promoter interaction (EPI) involves most of gene transcriptional regulation in the high eukaryotes. Predicting the EPIs from given genomic loci or DNA sequences is not a trivial task. The benchmarking work so far for EPI predictors is more or less empirical and lacks quantitative model-based comparisons, posing challenges for molecular biologists to obtain reliable EPI predictions. Here, we present an EPI prediction platform, namely Delta.EPI. Based on a statistic model of the data integration, Delta.EPI is capable of comprehensively assessing the predictions from four state-of-the-art EPI predictors. Equipped with a user-friendly interface and visualization platform, Delta.EPI presents the sorted results with the confidence of EPI relevance, which may guide the molecular biologists who lack the pre-knowledge of the algorithms of EPI prediction. Last, we showcase the utility of Delta.EPI with a case study. Delta.EPI provides a powerful tool to fuel the gene regulation and 3D genome studies by ease-to-access EPI predictions. Delta.EPI can be freely accessed at https://ngdc.cncb.ac.cn/deltaEPI/.
  • loading
  • [1]
    Abugessaisa, I., Ramilowski, J.A., Lizio, M., Severin, J., Hasegawa, A., Harshbarger, J., Kondo, A., Noguchi, S., Yip, C.W., Ooi, J.L.C., et al., 2021. FANTOM enters 20th year: expansion of transcriptomic atlases and functional annotation of non-coding RNAs. Nucleic Acids Res 49, D892-D898.
    [2]
    Andrews, S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data.
    [3]
    Ay, F., Bailey, T.L.,Noble, W.S., 2014. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res 24, 999-1011.
    [4]
    Cairns, J., Freire-Pritchett, P., Wingett, S.W., Varnai, C., Dimond, A., Plagnol, V., Zerbino, D., Schoenfelder, S., Javierre, B.-M., Osborne, C., et al., 2016. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biol 17, 127.
    [5]
    Cameron, C.J., Dostie, J.,Blanchette, M., 2020. HIFI: estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution. Genome Biol 21, 11.
    [6]
    Cao, Y., Chen, Z., Chen, X., Ai, D., Chen, G., McDermott, J., Huang, Y., Guo, X.,Han, J.J., 2020. Accurate loop calling for 3D genomic data with cLoops. Bioinformatics 36, 666-675.
    [7]
    Chang, L.H., Ghosh, S.,Noordermeer, D., 2020. TADs and Their Borders: Free Movement or Building a Wall? J Mol Biol 432, 643-652.
    [8]
    de Wit, E.,de Laat, W., 2012. A decade of 3C technologies: insights into nuclear organization. Genes Dev 26, 11-24.
    [9]
    Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S.,Ren, B., 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380.
    [10]
    Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y.J., Lee, C., Shendure, J., Fields, S., Blau, C.A.,Noble, W.S., 2010. A three-dimensional model of the yeast genome. Nature 465, 363-367.
    [11]
    Consortium, E.P., 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74.
    [12]
    Ernst, J.,Kellis, M., 2017. Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc 12, 2478-2492.
    [13]
    Fishilevich, S., Nudel, R., Rappaport, N., Hadar, R., Plaschkes, I., Iny Stein, T., Rosen, N., Kohn, A., Twik, M., Safran, M., et al., 2017. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017.
    [14]
    Forcato, M., Nicoletti, C., Pal, K., Livi, C.M., Ferrari, F.,Bicciato, S., 2017. Comparison of computational methods for Hi-C data analysis. Nat Methods 14, 679-685.
    [15]
    Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al., 2009. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58-64.
    [16]
    Handoko, L., Xu, H., Li, G., Ngan, C.Y., Chew, E., Schnapp, M., Lee, C.W., Ye, C., Ping, J.L., Mulawadi, F., et al., 2011. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet 43, 630-638.
    [17]
    Heinz, S., Texari, L., Hayes, M.G.B., Urbanowski, M., Chang, M.W., Givarkes, N., Rialdi, A., White, K.M., Albrecht, R.A., Pache, L., et al., 2018. Transcription Elongation Can Affect Genome 3D Structure. Cell 174, 1522-1536 e1522.
    [18]
    Howe, K.L., Achuthan, P., Allen, J., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, I.M., Azov, A.G., Bennett, R., Bhai, J., et al., 2021. Ensembl 2021. Nucleic Acids Res 49, D884-D891.
    [19]
    Hwang, Y.C., Lin, C.F., Valladares, O., Malamon, J., Kuksa, P.P., Zheng, Q., Gregory, B.D.,Wang, L.S., 2015. HIPPIE: a high-throughput identification pipeline for promoter interacting enhancer elements. Bioinformatics 31, 1290-1292.
    [20]
    Imakaev, M., Fudenberg, G., McCord, R.P., Naumova, N., Goloborodko, A., Lajoie, B.R., Dekker, J.,Mirny, L.A., 2012. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9, 999-1003.
    [21]
    Kaul, A., Bhattacharyya, S.,Ay, F., 2020. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat Protoc 15, 991-1012.
    [22]
    Krismer, K., Guo, Y.,Gifford, D.K., 2020. IDR2D identifies reproducible genomic interactions. Nucleic Acids Res 48, e31.
    [23]
    Krueger, F., James, F., Ewels, P., Afyounian, E.,Schuster-Boeckler, B. 2021. FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo.
    [24]
    Kyrchanova, O.,Georgiev, P., 2021. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int J Mol Sci 22.
    [25]
    Leinonen, R., Sugawara, H., Shumway, M.,International Nucleotide Sequence Database, C., 2011. The sequence read archive. Nucleic Acids Res 39, D19-21.
    [26]
    Li, A., Yin, X., Xu, B., Wang, D., Han, J., Wei, Y., Deng, Y., Xiong, Y.,Zhang, Z., 2018. Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy. Nat Commun 9, 3265.
    [27]
    Li, G., Ruan, X., Auerbach, R.K., Sandhu, K.S., Zheng, M., Wang, P., Poh, H.M., Goh, Y., Lim, J., Zhang, J., et al., 2012. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84-98.
    [28]
    Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al., 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293.
    [29]
    Lin, Y.C., Benner, C., Mansson, R., Heinz, S., Miyazaki, K., Miyazaki, M., Chandra, V., Bossen, C., Glass, C.K.,Murre, C., 2012. Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol 13, 1196-1204.
    [30]
    Lizio, M., Harshbarger, J., Shimoji, H., Severin, J., Kasukawa, T., Sahin, S., Abugessaisa, I., Fukuda, S., Hori, F., Ishikawa-Kato, S., et al., 2015. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16, 22.
    [31]
    Lun, A.T.,Smyth, G.K., 2015. diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinform 16, 258.
    [32]
    Maglott, D., Ostell, J., Pruitt, K.D.,Tatusova, T., 2011. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 39, D52-57.
    [33]
    Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17.
    [34]
    Mifsud, B., Martincorena, I., Darbo, E., Sugar, R., Schoenfelder, S., Fraser, P.,Luscombe, N.M., 2017. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data. PLoS One 12, e0174744.
    [35]
    Mifsud, B., Tavares-Cadete, F., Young, A.N., Sugar, R., Schoenfelder, S., Ferreira, L., Wingett, S.W., Andrews, S., Grey, W., Ewels, P.A., et al., 2015a. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47, 598-606.
    [36]
    Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., et al., 2021. Pfam: The protein families database in 2021. Nucleic Acids Res 49, D412-D419.
    [37]
    Moore, J.E., Pratt, H.E., Purcaro, M.J.,Weng, Z., 2020. A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods. Genome Biol 21, 17.
    [38]
    Mora, A., Sandve, G.K., Gabrielsen, O.S.,Eskeland, R., 2016. In the loop: promoter-enhancer interactions and bioinformatics. Brief Bioinform 17, 980-995.
    [39]
    Morgan, R.,Pandha, H.S., 2020. PBX3 in Cancer. Cancers (Basel) 12.
    [40]
    Nora, E.P., Lajoie, B.R., Schulz, E.G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N.L., Meisig, J., Sedat, J., et al., 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381-385.
    [41]
    Okonechnikov, K., Erkek, S., Korbel, J.O., Pfister, S.M.,Chavez, L., 2019. InTAD: chromosome conformation guided analysis of enhancer target genes. BMC Bioinform 20, 60.
    [42]
    Oudelaar, A.M.,Higgs, D.R., 2020. The relationship between genome structure and function. Nat Rev Genet 22, 154-168.
    [43]
    Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al., 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680.
    [44]
    Ron, G., Globerson, Y., Moran, D.,Kaplan, T., 2017. Promoter-enhancer interactions identified from Hi-C data using probabilistic models and hierarchical topological domains. Nat Commun 8, 2237.
    [45]
    Roy, A.L., Sen, R.,Roeder, R.G., 2011. Enhancer-promoter communication and transcriptional regulation of Igh. Trends Immunol 32, 532-539.
    [46]
    Schoenfelder, S.,Fraser, P., 2019. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet 20, 437-455.
    [47]
    Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker, J.,Barillot, E., 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16, 259.
    [48]
    Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A.,Cavalli, G., 2012. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458-472.
    [49]
    Tang, B., Li, X., Li, G., Tian, D., Li, F.,Zhang, Z., 2021. Exploring multiomics data in 3D genomic space using augmented reality based visualization platform Delta.AR. The Innovation.
    [50]
    Tang, B., Li, F., Li, J., Zhao, W.,Zhang, Z., 2018. Delta: a new web-based 3D genome visualization and analysis platform. Bioinformatics 34, 1409-1410.
    [51]
    Tang, Z., Luo, O.J., Li, X., Zheng, M., Zhu, J.J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., et al., 2015. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell 163, 1611-1627.
    [52]
    UniProt, C., 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49, D480-D489.
    [53]
    Vietri Rudan, M., Barrington, C., Henderson, S., Ernst, C., Odom, D.T., Tanay, A.,Hadjur, S., 2015. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep 10, 1297-1309.
    [54]
    Whalen, S., Truty, R.M.,Pollard, K.S., 2016. Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet 48, 488-496.
    [55]
    Wolff, J., Rabbani, L., Gilsbach, R., Richard, G., Manke, T., Backofen, R.,Gruning, B.A., 2020. Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization. Nucleic Acids Res 48, W177-W184.
    [56]
    Xu, Z., Zhang, G., Wu, C., Li, Y.,Hu, M., 2016. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data. Bioinformatics 32, 2692-2695.
    [57]
    Zhang, H., Li, F., Jia, Y., Xu, B., Zhang, Y., Li, X.,Zhang, Z., 2017. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution. Nucleic Acids Res 45, 12739-12751.
    [58]
    Zhang, Y., Wong, C.H., Birnbaum, R.Y., Li, G., Favaro, R., Ngan, C.Y., Lim, J., Tai, E., Poh, H.M., Wong, E., et al., 2013. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504, 306-310.
    [59]
    Zhao, Z., Tavoosidana, G., Sjolinder, M., Gondor, A., Mariano, P., Wang, S., Kanduri, C., Lezcano, M., Sandhu, K.S., Singh, U., et al., 2006. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38, 1341-1347.
    [60]
    Zheng, Y., Zhou, P.,Keles, S., 2021. FreeHi-C spike-in simulations for benchmarking differential chromatin interaction detection. Methods 189, 3-11.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (204) PDF downloads (3) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return