5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 7
Jul.  2023
Turn off MathJax
Article Contents

Phosphorylation of ATF2 promotes odontoblastic differentiation via intrinsic HAT activity

doi: 10.1016/j.jgg.2023.02.005
Funds:

This work was supported by the National Natural Science Foundation of China (No. 82071110 and No. 82230029) to Zhi Chen

the National Natural Science Foundation of China (No. 82071077 and No. 82270948), “the Fundamental Research Funds for the Central Universities” and “The Young Top-notch Talent Cultivation Program of Hubei Province” to Huan Liu.

  • Received Date: 2022-10-31
  • Accepted Date: 2023-02-05
  • Rev Recd Date: 2023-01-15
  • Publish Date: 2023-07-28
  • Mouse dental papilla cells (mDPCs) are cranial neural crest-derived dental mesenchymal cells that give rise to dentin-secreting odontoblasts after the bell stage during odontogenesis. The odontoblastic differentiation of mDPCs is spatiotemporally regulated by transcription factors (TFs). Our previous work reveals that chromatin accessibility was correlated with the occupation of the basic leucine zipper TF family during odontoblastic differentiation. However, the detailed mechanism by which TFs regulate the initiation of odontoblastic differentiation remains elusive. Here, we report that phosphorylation of ATF2 (p-ATF2) is particularly increased during odontoblastic differentiation in vivo and in vitro. ATAC-seq and p-ATF2 CUT&Tag experiments further demonstrate a high correlation between p-ATF2 localization and increased chromatin accessibility of regions near mineralization-related genes. Knockdown of Atf2 inhibits the odontoblastic differentiation of mDPCs, while overexpression of p-ATF2 promotes odontoblastic differentiation. ATAC-seq after overexpression of p-ATF2 reveals that p-ATF2 increases the chromatin accessibility of regions adjacent to genes associated with matrix mineralization. Furthermore, we find that p-ATF2 physically interacts with and promotes H2BK12 acetylation. Taken together, our findings reveal a mechanism that p-ATF2 promotes odontoblastic differentiation at initiation via remodeling chromatin accessibility and emphasize the role of the phosphoswitch model of TFs in cell fate transitions.
  • loading
  • [1]
    Ackermann, J., Ashton, G., Lyons, S., James, D., Hornung, J.P., Jones, N., Breitwieser, W., 2011. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development. PLoS. ONE. 6, e19090.
    [2]
    Alam, M.S., 2018. Proximity Ligation Assay (PLA). Curr. Protoc. Immunol. 123, e58.
    [3]
    Bolat, I., Keklikoglu, N., 2010. Immunoreactivity of ATF-2 and Fra-2 in human dental follicle. Folia. Histochem. Cytobiol. 48, 197-201.
    [4]
    Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114-2120.
    [5]
    Breitwieser, W., Lyons, S., Flenniken, A.M., Ashton, G., Bruder, G., Willington, M., Lacaud, G., Kouskoff, V., Jones, N., 2007. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes. Dev. 21, 2069-2082.
    [6]
    Bruhat, A., Cherasse, Y., Maurin, A.C., Breitwieser, W., Parry, L., Deval, C., Jones, N., Jousse, C., Fafournoux, P., 2007. ATF2 is required for amino acid-regulated transcription by orchestrating specific histone acetylation. Nucleic. Acids. Res. 35, 1312-1321.
    [7]
    Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods. 10, 1213-1218.
    [8]
    Chen, Z., Xie, H., Yuan, J., Lan, Y., Xie, Z., 2021. Kruppel-like factor 6 promotes odontoblastic differentiation through regulating the expression of dentine sialophosphoprotein and dentine matrix protein 1 genes. Int. Endod. J. 54, 572-584.
    [9]
    Doi, M., Hirayama, J., Sassone-Corsi, P., 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 125, 497-508.
    [10]
    Fedde, K.N., Blair, L., Silverstein, J., Coburn, S.P., Ryan, L.M., Weinstein, R.S., Waymire, K., Narisawa, S., Millan, J.L., MacGregor, G.R., et al., 1999. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone. Miner. Res. 14, 2015-2026.
    [11]
    Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranasic, D., et al., 2020. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic. Acids. Res. 48, D87-D92.
    [12]
    Fredriksson, S., Gullberg, M., Jarvius, J., Olsson, C., Pietras, K., Gustafsdottir, S.M., Ostman, A., Landegren, U., 2002. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473-477.
    [13]
    Gao, L., Sheu, T.J., Dong, Y., Hoak, D.M., Zuscik, M.J., Schwarz, E.M., Hilton, M.J., O'Keefe, R.J., Jonason, J.H., 2013. TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages. J. Cell. Sci. 126, 5704-5713.
    [14]
    Gelens, L., Saurin, A.T., 2018. Exploring the Function of Dynamic Phosphorylation-Dephosphorylation Cycles. Dev. Cell. 44, 659-663.
    [15]
    Gong, P., Stewart, D., Hu, B., Vinson, C., Alam, J., 2002. Multiple basic-leucine zipper proteins regulate induction of the mouse heme oxygenase-1 gene by arsenite. Arch. Biochem. Biophys. 405, 265-274.
    [16]
    Hai, T., Curran, T., 1991. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. U. S. A. 88, 3720-3724.
    [17]
    Hayakawa, J., Mittal, S., Wang, Y., Korkmaz, K.S., Adamson, E., English, C., Ohmichi, M., McClelland, M., Mercola, D., 2004. Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol. Cell. 16, 521-535.
    [18]
    Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., Glass, C.K., 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38, 576-589.
    [19]
    Ishii, M., Merrill, A.E., Chan, Y.S., Gitelman, I., Rice, D.P., Sucov, H.M., Maxson, R.E., Jr., 2003. Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault. Development. 130, 6131-6142.
    [20]
    Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K., Nakatani, Y., Yokoyama, K.K., 2000. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature. 405, 195-200.
    [21]
    Kaya-Okur, H.S., Wu, S.J., Codomo, C.A., Pledger, E.S., Bryson, T.D., Henikoff, J.G., Ahmad, K., Henikoff, S., 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930.
    [22]
    Keklikoglu, N., Akinci, S., 2015. ATF-2 immunoreactivity in post-mitotic and terminally differentiated human odontoblasts. Med. Mol. Morphol. 48, 164-168.
    [23]
    Kirsch, K., Zeke, A., Toke, O., Sok, P., Sethi, A., Sebo, A., Kumar, G.S., Egri, P., Poti, A.L., Gooley, P., et al., 2020. Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. Nat. Commun. 11, 5769.
    [24]
    Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357-359.
    [25]
    Lau, E., Ronai, Z.A., 2012. ATF2 - at the crossroad of nuclear and cytosolic functions. J. Cell. Sci. 125, 2815-2824.
    [26]
    Lee, K.K., Workman, J.L., 2007. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell. Biol. 8, 284-295.
    [27]
    Li, B., Carey, M., Workman, J.L., 2007. The role of chromatin during transcription. Cell. 128, 707-719.
    [28]
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078-2079.
    [29]
    Li, S., Kong, H., Yao, N., Yu, Q., Wang, P., Lin, Y., Wang, J., Kuang, R., Zhao, X., Xu, J., et al., 2011. The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochem. Biophys. Res. Commun. 410, 698-704.
    [30]
    Li, X.Y., Green, M.R., 1996. Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain. Genes. Dev. 10, 517-527.
    [31]
    Lin, H., Liu, H., Sun, Q., Yuan, G., Zhang, L., Chen, Z., 2013. Establishment and characterization of a tamoxifen-mediated reversible immortalized mouse dental papilla cell line. In. Vitro. Cell. Dev. Biol. Anim. 49, 114-121.
    [32]
    Lin, H., Xu, L., Liu, H., Sun, Q., Chen, Z., Yuan, G., Chen, Z., 2011. KLF4 promotes the odontoblastic differentiation of human dental pulp cells. J. Endod. 37, 948-954.
    [33]
    Lin, Y., Xiao, Y., Lin, C., Zhang, Q., Zhang, S., Pei, F., Liu, H., Chen, Z., 2021. SALL1 regulates commitment of odontoblast lineages by interacting with RUNX2 to remodel open chromatin regions. Stem. Cells. 39, 196-209.
    [34]
    Liu, H., Duncan, K., Helverson, A., Kumari, P., Mumm, C., Xiao, Y., Carlson, J.C., Darbellay, F., Visel, A., Leslie, E., et al., 2020. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. Elife. 9.
    [35]
    Livingstone, C., Patel, G., Jones, N., 1995. ATF-2 contains a phosphorylation-dependent transcriptional activation domain. Embo. J. 14, 1785-1797.
    [36]
    Lopez-Bergami, P., Lau, E., Ronai, Z., 2010. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat. Rev. Cancer. 10, 65-76.
    [37]
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550.
    [38]
    Lynch, V.J., May, G., Wagner, G.P., 2011. Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature. 480, 383-386.
    [39]
    Maekawa, T., Bernier, F., Sato, M., Nomura, S., Singh, M., Inoue, Y., Tokunaga, T., Imai, H., Yokoyama, M., Reimold, A., et al., 1999. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J. Biol. Chem. 274, 17813-17819.
    [40]
    McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., Bejerano, G., 2010. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495-501.
    [41]
    Mobley, R.J., Abell, A.N., 2017. Controlling Epithelial to Mesenchymal Transition through Acetylation of Histone H2BK5. J. Nat. Sci. 3.
    [42]
    Namachivayam, K., MohanKumar, K., Arbach, D., Jagadeeswaran, R., Jain, S.K., Natarajan, V., Mehta, D., Jankov, R.P., Maheshwari, A., 2015. All-Trans Retinoic Acid Induces TGF-beta2 in Intestinal Epithelial Cells via RhoA- and p38alpha MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS. ONE. 10, e0134003.
    [43]
    Nishikawa, S., 2004. Transient increase in anti-p-ATF2 immunoreactivity in the late secretion ameloblasts apical to the transition zone of rat incisors. Anat. Sci. Int. 79, 87-94.
    [44]
    Ouwens, D.M., de Ruiter, N.D., van der Zon, G.C., Carter, A.P., Schouten, J., van der Burgt, C., Kooistra, K., Bos, J.L., Maassen, J.A., van Dam, H., 2002. Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. Embo. J. 21, 3782-3793.
    [45]
    Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F., Manke, T., 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic. Acids. Res. 44, W160-W165.
    [46]
    Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308.
    [47]
    Reibel, A., Maniere, M.C., Clauss, F., Droz, D., Alembik, Y., Mornet, E., Bloch-Zupan, A., 2009. Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet. J. Rare. Dis. 4, 6.
    [48]
    Reimold, A.M., Grusby, M.J., Kosaras, B., Fries, J.W., Mori, R., Maniwa, S., Clauss, I.M., Collins, T., Sidman, R.L., Glimcher, M.J., et al., 1996. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature. 379, 262-265.
    [49]
    Ruch, J.V., 1998. Odontoblast commitment and differentiation. Biochem. Cell. Biol. 76(6), 923-938.
    [50]
    Shaulian, E., Karin, M., 2002. AP-1 as a regulator of cell life and death. Nat. Cell. Biol. 4, E131-136.
    [51]
    Simon, S., Smith, A.J., Berdal, A., Lumley, P.J., Cooper, P.R., 2010. The MAP kinase pathway is involved in odontoblast stimulation via p38 phosphorylation. J. Endod. 36 (2), 256–259.
    [52]
    Spitz, F., Furlong, E.E., 2012. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613-626.
    [53]
    Struhl, K., 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes. Dev. 12, 599-606.
    [54]
    Tao, H., Lin, H., Sun, Z., Pei, F., Zhang, J., Chen, S., Liu, H., Chen, Z., 2019. Klf4 Promotes Dentinogenesis and Odontoblastic Differentiation via Modulation of TGF-beta Signaling Pathway and Interaction With Histone Acetylation. J. Bone. Miner. Res. 34, 1502-1516.
    [55]
    Voss, T.C., Hager, G.L., 2014. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15, 69-81.
    [56]
    Whitmarsh, A.J., Davis, R.J., 2000. Regulation of transcription factor function by phosphorylation. Cell. Mol. Life. Sci. 57, 1172-1183.
    [57]
    Xiao, Y., Lin, Y.X., Cui, Y., Zhang, Q., Pei, F., Zuo, H.Y., Liu, H., Chen, Z., 2021. Zeb1 Promotes Odontoblast Differentiation in a Stage-Dependent Manner. J. Dent. Res., 22034520982249.
    [58]
    Yang, J., Ye, L., Hui, T.Q., Yang, D.M., Huang, D.M., Zhou, X.D., Mao, J.J., Wang, C.L., 2015. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway. Int. J. Oral. Sci. 7 (2), 95–102.
    [59]
    Yang, G., Yuan, G., MacDougall, M., Zhi, C., Chen, S., 2017. BMP-2 induced Dspp transcription is mediated by Dlx3/Osx signaling pathway in odontoblasts. Sci. Rep. 7, 10775.
    [60]
    Yang, X., Chen, L., Xu, X., Li, C., Huang, C., Deng, C.X., 2001. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell. Biol. 153, 35-46.
    [61]
    Yang, X., Yan, J., Zhang, Z., Lin, T., Xin, T., Wang, B., Wang, S., Zhao, J., Zhang, Z., Lucas, W.J., et al., 2020. Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nat. Plants. 6, 809-822.
    [62]
    Zhang, Q., Huang, Z., Zuo, H., Lin, Y., Xiao, Y., Yan, Y., Cui, Y., Lin, C., Pei, F., Chen, Z., et al., 2021. Chromatin Accessibility Predetermines Odontoblast Terminal Differentiation. Front. Cell. Dev. Biol. 9, 769193.
    [63]
    Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al., 2008. Model-based analysis of ChIP-Seq (MACS). Genome. Biol. 9, R137.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (192) PDF downloads (13) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return