[1] |
Ackermann, J., Ashton, G., Lyons, S., James, D., Hornung, J.P., Jones, N., Breitwieser, W., 2011. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development. PLoS. ONE. 6, e19090.
|
[2] |
Alam, M.S., 2018. Proximity Ligation Assay (PLA). Curr. Protoc. Immunol. 123, e58.
|
[3] |
Bolat, I., Keklikoglu, N., 2010. Immunoreactivity of ATF-2 and Fra-2 in human dental follicle. Folia. Histochem. Cytobiol. 48, 197-201.
|
[4] |
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114-2120.
|
[5] |
Breitwieser, W., Lyons, S., Flenniken, A.M., Ashton, G., Bruder, G., Willington, M., Lacaud, G., Kouskoff, V., Jones, N., 2007. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes. Dev. 21, 2069-2082.
|
[6] |
Bruhat, A., Cherasse, Y., Maurin, A.C., Breitwieser, W., Parry, L., Deval, C., Jones, N., Jousse, C., Fafournoux, P., 2007. ATF2 is required for amino acid-regulated transcription by orchestrating specific histone acetylation. Nucleic. Acids. Res. 35, 1312-1321.
|
[7] |
Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods. 10, 1213-1218.
|
[8] |
Chen, Z., Xie, H., Yuan, J., Lan, Y., Xie, Z., 2021. Kruppel-like factor 6 promotes odontoblastic differentiation through regulating the expression of dentine sialophosphoprotein and dentine matrix protein 1 genes. Int. Endod. J. 54, 572-584.
|
[9] |
Doi, M., Hirayama, J., Sassone-Corsi, P., 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 125, 497-508.
|
[10] |
Fedde, K.N., Blair, L., Silverstein, J., Coburn, S.P., Ryan, L.M., Weinstein, R.S., Waymire, K., Narisawa, S., Millan, J.L., MacGregor, G.R., et al., 1999. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J. Bone. Miner. Res. 14, 2015-2026.
|
[11] |
Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranasic, D., et al., 2020. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic. Acids. Res. 48, D87-D92.
|
[12] |
Fredriksson, S., Gullberg, M., Jarvius, J., Olsson, C., Pietras, K., Gustafsdottir, S.M., Ostman, A., Landegren, U., 2002. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 20, 473-477.
|
[13] |
Gao, L., Sheu, T.J., Dong, Y., Hoak, D.M., Zuscik, M.J., Schwarz, E.M., Hilton, M.J., O'Keefe, R.J., Jonason, J.H., 2013. TAK1 regulates SOX9 expression in chondrocytes and is essential for postnatal development of the growth plate and articular cartilages. J. Cell. Sci. 126, 5704-5713.
|
[14] |
Gelens, L., Saurin, A.T., 2018. Exploring the Function of Dynamic Phosphorylation-Dephosphorylation Cycles. Dev. Cell. 44, 659-663.
|
[15] |
Gong, P., Stewart, D., Hu, B., Vinson, C., Alam, J., 2002. Multiple basic-leucine zipper proteins regulate induction of the mouse heme oxygenase-1 gene by arsenite. Arch. Biochem. Biophys. 405, 265-274.
|
[16] |
Hai, T., Curran, T., 1991. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. U. S. A. 88, 3720-3724.
|
[17] |
Hayakawa, J., Mittal, S., Wang, Y., Korkmaz, K.S., Adamson, E., English, C., Ohmichi, M., McClelland, M., Mercola, D., 2004. Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol. Cell. 16, 521-535.
|
[18] |
Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., Glass, C.K., 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38, 576-589.
|
[19] |
Ishii, M., Merrill, A.E., Chan, Y.S., Gitelman, I., Rice, D.P., Sucov, H.M., Maxson, R.E., Jr., 2003. Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault. Development. 130, 6131-6142.
|
[20] |
Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K., Nakatani, Y., Yokoyama, K.K., 2000. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature. 405, 195-200.
|
[21] |
Kaya-Okur, H.S., Wu, S.J., Codomo, C.A., Pledger, E.S., Bryson, T.D., Henikoff, J.G., Ahmad, K., Henikoff, S., 2019. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930.
|
[22] |
Keklikoglu, N., Akinci, S., 2015. ATF-2 immunoreactivity in post-mitotic and terminally differentiated human odontoblasts. Med. Mol. Morphol. 48, 164-168.
|
[23] |
Kirsch, K., Zeke, A., Toke, O., Sok, P., Sethi, A., Sebo, A., Kumar, G.S., Egri, P., Poti, A.L., Gooley, P., et al., 2020. Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. Nat. Commun. 11, 5769.
|
[24] |
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357-359.
|
[25] |
Lau, E., Ronai, Z.A., 2012. ATF2 - at the crossroad of nuclear and cytosolic functions. J. Cell. Sci. 125, 2815-2824.
|
[26] |
Lee, K.K., Workman, J.L., 2007. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell. Biol. 8, 284-295.
|
[27] |
Li, B., Carey, M., Workman, J.L., 2007. The role of chromatin during transcription. Cell. 128, 707-719.
|
[28] |
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25, 2078-2079.
|
[29] |
Li, S., Kong, H., Yao, N., Yu, Q., Wang, P., Lin, Y., Wang, J., Kuang, R., Zhao, X., Xu, J., et al., 2011. The role of runt-related transcription factor 2 (Runx2) in the late stage of odontoblast differentiation and dentin formation. Biochem. Biophys. Res. Commun. 410, 698-704.
|
[30] |
Li, X.Y., Green, M.R., 1996. Intramolecular inhibition of activating transcription factor-2 function by its DNA-binding domain. Genes. Dev. 10, 517-527.
|
[31] |
Lin, H., Liu, H., Sun, Q., Yuan, G., Zhang, L., Chen, Z., 2013. Establishment and characterization of a tamoxifen-mediated reversible immortalized mouse dental papilla cell line. In. Vitro. Cell. Dev. Biol. Anim. 49, 114-121.
|
[32] |
Lin, H., Xu, L., Liu, H., Sun, Q., Chen, Z., Yuan, G., Chen, Z., 2011. KLF4 promotes the odontoblastic differentiation of human dental pulp cells. J. Endod. 37, 948-954.
|
[33] |
Lin, Y., Xiao, Y., Lin, C., Zhang, Q., Zhang, S., Pei, F., Liu, H., Chen, Z., 2021. SALL1 regulates commitment of odontoblast lineages by interacting with RUNX2 to remodel open chromatin regions. Stem. Cells. 39, 196-209.
|
[34] |
Liu, H., Duncan, K., Helverson, A., Kumari, P., Mumm, C., Xiao, Y., Carlson, J.C., Darbellay, F., Visel, A., Leslie, E., et al., 2020. Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. Elife. 9.
|
[35] |
Livingstone, C., Patel, G., Jones, N., 1995. ATF-2 contains a phosphorylation-dependent transcriptional activation domain. Embo. J. 14, 1785-1797.
|
[36] |
Lopez-Bergami, P., Lau, E., Ronai, Z., 2010. Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat. Rev. Cancer. 10, 65-76.
|
[37] |
Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome. Biol. 15, 550.
|
[38] |
Lynch, V.J., May, G., Wagner, G.P., 2011. Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature. 480, 383-386.
|
[39] |
Maekawa, T., Bernier, F., Sato, M., Nomura, S., Singh, M., Inoue, Y., Tokunaga, T., Imai, H., Yokoyama, M., Reimold, A., et al., 1999. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J. Biol. Chem. 274, 17813-17819.
|
[40] |
McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C.B., Wenger, A.M., Bejerano, G., 2010. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495-501.
|
[41] |
Mobley, R.J., Abell, A.N., 2017. Controlling Epithelial to Mesenchymal Transition through Acetylation of Histone H2BK5. J. Nat. Sci. 3.
|
[42] |
Namachivayam, K., MohanKumar, K., Arbach, D., Jagadeeswaran, R., Jain, S.K., Natarajan, V., Mehta, D., Jankov, R.P., Maheshwari, A., 2015. All-Trans Retinoic Acid Induces TGF-beta2 in Intestinal Epithelial Cells via RhoA- and p38alpha MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS. ONE. 10, e0134003.
|
[43] |
Nishikawa, S., 2004. Transient increase in anti-p-ATF2 immunoreactivity in the late secretion ameloblasts apical to the transition zone of rat incisors. Anat. Sci. Int. 79, 87-94.
|
[44] |
Ouwens, D.M., de Ruiter, N.D., van der Zon, G.C., Carter, A.P., Schouten, J., van der Burgt, C., Kooistra, K., Bos, J.L., Maassen, J.A., van Dam, H., 2002. Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. Embo. J. 21, 3782-3793.
|
[45] |
Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F., Manke, T., 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic. Acids. Res. 44, W160-W165.
|
[46] |
Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308.
|
[47] |
Reibel, A., Maniere, M.C., Clauss, F., Droz, D., Alembik, Y., Mornet, E., Bloch-Zupan, A., 2009. Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet. J. Rare. Dis. 4, 6.
|
[48] |
Reimold, A.M., Grusby, M.J., Kosaras, B., Fries, J.W., Mori, R., Maniwa, S., Clauss, I.M., Collins, T., Sidman, R.L., Glimcher, M.J., et al., 1996. Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature. 379, 262-265.
|
[49] |
Ruch, J.V., 1998. Odontoblast commitment and differentiation. Biochem. Cell. Biol. 76(6), 923-938.
|
[50] |
Shaulian, E., Karin, M., 2002. AP-1 as a regulator of cell life and death. Nat. Cell. Biol. 4, E131-136.
|
[51] |
Simon, S., Smith, A.J., Berdal, A., Lumley, P.J., Cooper, P.R., 2010. The MAP kinase pathway is involved in odontoblast stimulation via p38 phosphorylation. J. Endod. 36 (2), 256–259.
|
[52] |
Spitz, F., Furlong, E.E., 2012. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613-626.
|
[53] |
Struhl, K., 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes. Dev. 12, 599-606.
|
[54] |
Tao, H., Lin, H., Sun, Z., Pei, F., Zhang, J., Chen, S., Liu, H., Chen, Z., 2019. Klf4 Promotes Dentinogenesis and Odontoblastic Differentiation via Modulation of TGF-beta Signaling Pathway and Interaction With Histone Acetylation. J. Bone. Miner. Res. 34, 1502-1516.
|
[55] |
Voss, T.C., Hager, G.L., 2014. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15, 69-81.
|
[56] |
Whitmarsh, A.J., Davis, R.J., 2000. Regulation of transcription factor function by phosphorylation. Cell. Mol. Life. Sci. 57, 1172-1183.
|
[57] |
Xiao, Y., Lin, Y.X., Cui, Y., Zhang, Q., Pei, F., Zuo, H.Y., Liu, H., Chen, Z., 2021. Zeb1 Promotes Odontoblast Differentiation in a Stage-Dependent Manner. J. Dent. Res., 22034520982249.
|
[58] |
Yang, J., Ye, L., Hui, T.Q., Yang, D.M., Huang, D.M., Zhou, X.D., Mao, J.J., Wang, C.L., 2015. Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway. Int. J. Oral. Sci. 7 (2), 95–102.
|
[59] |
Yang, G., Yuan, G., MacDougall, M., Zhi, C., Chen, S., 2017. BMP-2 induced Dspp transcription is mediated by Dlx3/Osx signaling pathway in odontoblasts. Sci. Rep. 7, 10775.
|
[60] |
Yang, X., Chen, L., Xu, X., Li, C., Huang, C., Deng, C.X., 2001. TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell. Biol. 153, 35-46.
|
[61] |
Yang, X., Yan, J., Zhang, Z., Lin, T., Xin, T., Wang, B., Wang, S., Zhao, J., Zhang, Z., Lucas, W.J., et al., 2020. Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nat. Plants. 6, 809-822.
|
[62] |
Zhang, Q., Huang, Z., Zuo, H., Lin, Y., Xiao, Y., Yan, Y., Cui, Y., Lin, C., Pei, F., Chen, Z., et al., 2021. Chromatin Accessibility Predetermines Odontoblast Terminal Differentiation. Front. Cell. Dev. Biol. 9, 769193.
|
[63] |
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al., 2008. Model-based analysis of ChIP-Seq (MACS). Genome. Biol. 9, R137.
|