5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 9
Sep.  2023
Turn off MathJax
Article Contents

Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections

doi: 10.1016/j.jgg.2023.02.004 cstr: 32370.14.j.jgg.2023.02.004
Funds:

This study was supported by the Natural Science Foundation of Fujian Province (2022J06022), the Quanzhou Science and Technology Plan Project (2021C040R), and the Scientific Research Funds of Huaqiao University.

  • Received Date: 2022-11-03
  • Accepted Date: 2023-02-02
  • Rev Recd Date: 2023-01-30
  • Publish Date: 2023-02-15
  • Spatial transcriptomics enables the study of localization-indexed gene expression activity in tissues, providing the transcriptional landscape that in turn indicates the potential regulatory networks of gene expression. In situ sequencing (ISS) is a targeted spatial transcriptomic technique, based on padlock probe and rolling circle amplification combined with next-generation sequencing chemistry, for highly multiplexed in situ gene expression profiling. Here, we present improved in situ sequencing (IISS) that exploits a new probing and barcoding approach, combined with advanced image analysis pipelines for high-resolution targeted spatial gene expression profiling. We develop an improved combinatorial probe anchor ligation chemistry using a 2-base encoding strategy for barcode interrogation. The new encoding strategy results in higher signal intensity as well as improved specificity for in situ sequencing, while maintaining a streamlined analysis pipeline for targeted spatial transcriptomics. We show that IISS can be applied to both fresh frozen tissue and formalin-fixed paraffin-embedded tissue sections for single-cell level spatial gene expression analysis, based on which the developmental trajectory and cell-cell communication networks can also be constructed.
  • loading
  • [1]
    Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S.,Zhuang, X., 2015. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348, aaa6090.
    [2]
    Chen, Y., McAndrews, K.M.,Kalluri, R., 2021. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol., 18, 792-804.
    [3]
    Codeluppi, S., Borm, L.E., Zeisel, A., La Manno, G., van Lunteren, J.A., Svensson, C.I.,Linnarsson, S., 2018. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods, 15, 932-935.
    [4]
    Drmanac, R., Sparks, A.B., Callow, M.J., Halpern, A.L., Burns, N.L., Kermani, B.G., Carnevali, P., Nazarenko, I., Nilsen, G.B., Yeung, G., et al., 2010. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327, 78-81.
    [5]
    Efremova, M., Vento-Tormo, M., Teichmann, S.A.,Vento-Tormo, R., 2020. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc., 15, 1484-1506.
    [6]
    Emmert-Buck, M.R., Bonner, R.F., Smith, P.D., Chuaqui, R.F., Zhuang, Z., Goldstein, S.R., Weiss, R.A.,Liotta, L.A., 1996. Laser capture microdissection. Science, 274, 998-1001.
    [7]
    Eng, C.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., Karp, C., Yuan, G.C., et al., 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature, 568, 235-239.
    [8]
    Jian, F., Yanhong, J., Limeng, W., Guoping, N., Yiqing, T., Hao, L.,Zhaoji, P., 2022. TIMP2 is associated with prognosis and immune infiltrates of gastric and colon cancer. Int. Immunopharm., 110, 109008.
    [9]
    Ghislat, G., Cheema, A.S., Baudoin, E., Verthuy, C., Ballester, P.J., Crozat, K., Attaf, N., Dong, C., Milpied, P., Malissen, B., et al., 2021. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci. Immunol., 6, 3570.
    [10]
    Giorello, M.B., Borzone, F.R., Labovsky, V., Piccioni, F.V.,Chasseing, N.A., 2021. Cancer-associated fibroblasts in the breast tumor microenvironment. J. Mammary Gland Biol. Neoplasia, 26, 135-155.
    [11]
    Gisina, A., Novikova, S., Kim, Y., Sidorov, D., Bykasov, S., Volchenko, N., Kaprin, A., Zgoda, V., Yarygin, K.,Lupatov, A., 2021. CEACAM5 overexpression is a reliable characteristic of CD133-positive colorectal cancer stem cells. Cancer Biomarkers., 32, 85-98.
    [12]
    Gyllborg, D., Langseth, C.M., Qian, X., Choi, E., Salas, S.M., Hilscher, M.M., Lein, E.S.,Nilsson, M., 2020. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res., 48, e112.
    [13]
    Kanzaki, R.,Pietras, K., 2020. Heterogeneity of cancer-associated fibroblasts: opportunities for precision medicine. Cancer Sci., 111, 2708-2717.
    [14]
    Ke, R., Mignardi, M., Hauling, T.,Nilsson, M., 2016. Fourth generation of next-generation sequencing technologies: promise and consequences. Hum. Mutat., 37, 1363-1367.
    [15]
    Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wahlby, C.,Nilsson, M., 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857-860.
    [16]
    Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K.,Mardis, E.R., 2013. The next-generation sequencing revolution and its impact on genomics. Cell, 155, 27-38.
    [17]
    Le, P., Ahmed, N.,Yeo, G.W., 2022. Illuminating RNA biology through imaging. Nat. Cell Biol., 24, 815-824.
    [18]
    Lee, H., Marco Salas, S., Gyllborg, D.,Nilsson, M., 2022. Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue. Sci. Rep., 12, 7976.
    [19]
    Lee, H.-O., Hong, Y., Etlioglu, H.E., Cho, Y.B., Pomella, V., Van den Bosch, B., Vanhecke, J., Verbandt, S., Hong, H., Min, J.-W., et al., 2020. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat. Genet., 52, 594-603.
    [20]
    Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Yang, J.L., Ferrante, T.C., Terry, R., Jeanty, S.S., Li, C., Amamoto, R., et al., 2014a. Highly multiplexed subcellular RNA sequencing in situ. Science, 343, 1360-1363.
    [21]
    Lee, S.Y., Kim, J.M., Cho, S.Y., Kim, H.S., Shin, H.S., Jeon, J.Y., Kausar, R., Jeong, S.Y., Lee, Y.S.,Lee, M.A., 2014b. TIMP-1 modulates chemotaxis of human neural stem cells through CD63 and integrin signalling. Biochem. J., 459, 565-576.
    [22]
    Lin, C., Jiang, M., Liu, L., Chen, X., Zhao, Y., Chen, L., Hong, Y., Wang, X., Hong, C., Yao, X., et al., 2021. Imaging of individual transcripts by amplification-based single-molecule fluorescence in situ hybridization. Nat. Biotechnol., 61, 116-123.
    [23]
    Liu, S., Punthambaker, S., Iyer, E.P.R., Ferrante, T., Goodwin, D., Furth, D., Pawlowski, A.C., Jindal, K., Tam, J.M., Mifflin, L., et al., 2021. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res., 49, e58.
    [24]
    Moses, L.,Pachter, L., 2022. Museum of spatial transcriptomics. Nat. Methods, 19, 534-546.
    [25]
    Pham, D., Tan, X., Xu, J., Grice, L.F., Lam, P.Y., Raghubar, A., Vukovic, J., Ruitenberg, M.J.,Nguyen, Q., 2020. stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues. bioRxiv, 2020.2005.2031.125658.
    [26]
    Qian, X., Harris, K.D., Hauling, T., Nicoloutsopoulos, D., Munoz-Manchado, A.B., Skene, N., Hjerling-Leffler, J.,Nilsson, M., 2020. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods, 17, 101-106.
    [27]
    Song, G., Xu, S., Zhang, H., Wang, Y., Xiao, C., Jiang, T., Wu, L., Zhang, T., Sun, X., Zhong, L., et al., 2016. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J. Exp. Clin. Cancer Res., 35, 148.
    [28]
    Stahl, P.L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O., Huss, M., et al., 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353, 78-82.
    [29]
    Stringer, C., Wang, T., Michaelos, M.,Pachitariu, M., 2021. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods, 18, 100-106.
    [30]
    Svedlund, J., Strell, C., Qian, X., Zilkens, K.J.C., Tobin, N.P., Bergh, J., Sieuwerts, A.M.,Nilsson, M., 2019. Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine, 48, 212-223.
    [31]
    Wang, F., Flanagan, J., Su, N., Wang, L.C., Bui, S., Nielson, A., Wu, X., Vo, H.T., Ma, X.J.,Luo, Y., 2012. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn., 14, 22-29.
    [32]
    Wang, Y.S.,Guo, J., 2021. Multiplexed single-cell in situ RNA profiling. Front. Mol. Biosci., 8, 775410.
    [33]
    Yu, Y., Zeng, Z., Xie, D., Chen, R., Sha, Y., Huang, S., Cai, W., Chen, W., Li, W., Ke, R., et al., 2021. Interneuron origin and molecular diversity in the human fetal brain. Nat. Neurosci., 24, 1745-1756.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (432) PDF downloads (26) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return