5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 7
Jul.  2023
Turn off MathJax
Article Contents

O-GlcNAcylation regulates phagocytosis by promoting Ezrin localization at the cell cortex

doi: 10.1016/j.jgg.2023.02.003
Funds:

The work was supported by grants from the National Natural Science Foundation of China (32100549 and 31991193).

  • Received Date: 2022-10-16
  • Accepted Date: 2023-02-02
  • Rev Recd Date: 2023-01-25
  • Publish Date: 2023-07-28
  • O-GlcNAcylation is a post-translational modification that serves as a cellular nutrient sensor and participates in multiple physiological and pathological processes. However, it remains uncertain whether O-GlcNAcylation is involved in the regulation of phagocytosis. Here, we demonstrate a rapid increase in protein O-GlcNAcylation in response to phagocytotic stimuli. Knockout of the O-GlcNAc transferase or pharmacological inhibition of O-GlcNAcylation dramatically blocks phagocytosis, resulting in the disruption of retinal structure and function. Mechanistic studies reveal that the O-GlcNAc transferase interacts with Ezrin, a membrane-cytoskeleton linker protein, to catalyze its O-GlcNAcylation. Our data further show that Ezrin O-GlcNAcylation promotes its localization to the cell cortex, thereby stimulating the membrane-cytoskeleton interaction needed for efficient phagocytosis. These findings identify a previously unrecognized role for protein O-GlcNAcylation in phagocytosis with important implications in both health and diseases.
  • loading
  • [1]
    Achberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W., Shen, N., et al., 2019. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife 8, e46188.
    [2]
    Bertolotti, E., Neri, A., Camparini, M., Macaluso, C., Marigo, V., 2014. Stem cells as source for retinal pigment epithelium transplantation. Prog. Retin. Eye Res. 42, 130-144.
    [3]
    Bond, M.R., Hanover, J.A., 2015. A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208, 869-880.
    [4]
    Chatham, J.C., Zhang, J., Wende, A.R., 2021. Role of O-linked N-acetylglucosamine protein modification in cellular (Patho)Physiology. Physiol. Rev. 101, 427-493.
    [5]
    Du, S.W., Palczewski, K., 2022. MicroRNA regulation of critical retinal pigment epithelial functions. Trends Neurosci. 45, 78-90.
    [6]
    Fehl, C., Hanover, J.A., 2022. Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nat. Chem. Biol. 18, 8-17.
    [7]
    Finnemann, S.C., Bonilha, V.L., Marmorstein, A.D., Rodriguez-Boulan, E., 1997. Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Proc. Natl. Acad. Sci. U. S. A. 94, 12932-12937.
    [8]
    Finnemann, S.C., Leung, L.W., Rodriguez-Boulan, E., 2002. The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc. Natl. Acad. Sci. U. S. A. 99, 3842-3847.
    [9]
    Flores-Bellver, M., Mighty, J., Aparicio-Domingo, S., Li, K.V., Shi, C., Zhou, J., Cobb, H., McGrath, P., Michelis, G., Lenhart, P., et al., 2021. Extracellular vesicles released by human retinal pigment epithelium mediate increased polarised secretion of drusen proteins in response to AMD stressors. J. Extracell. Vesicles 10, e12165.
    [10]
    Freeman, S.A., Vega, A., Riedl, M., Collins, R.F., Ostrowski, P.P., Woods, E.C., Bertozzi, C.R., Tammi, M.I., Lidke, D.S., Johnson, P., et al., 2018. Transmembrane pickets connect cyto- and pericellular skeletons forming barriers to receptor engagement. Cell 172, 305-317. e310.
    [11]
    Go, Y. M., Zhang, J., Fernandes, J., Litwin, C., Chen, R., Wensel, T.G., Jones, D.P., Cai, J., Chen, Y., 2020. MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium. Faseb. J. 34, 12502-12520.
    [12]
    Green, W.R., McDonnell, P.J., Yeo, J.H., 1985. Pathologic features of senile macular degeneration. Ophthalmology 92, 615-627.
    [13]
    Hardiville, S., Hart, G.W., 2014. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metabol. 20, 208-213.
    [14]
    Jiang, J., Promchan, K., Jiang, H., Awasthi, P., Marshall, H., Harned, A., Natarajan, V., 2016. Depletion of BBS protein LZTFL1 affects growth and causes retinal degeneration in mice. J. Genet. Genomics 43, 381-391.
    [15]
    Kaarniranta, K., Blasiak, J., Liton, P., Boulton, M., Klionsky, D.J., Sinha, D., 2022. Autophagy in age-related macular degeneration. Autophagy 19, 1-13.
    [16]
    Kurz, T., Karlsson, M., Brunk, U.T., Nilsson, S.E., Frennesson, C., 2009. ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron. Autophagy 5, 494-501.
    [17]
    Lagerlof, O., Slocomb, J.E., Hong, I., Aponte, Y., Blackshaw, S., Hart, G.W., Huganir, R.L., 2016. The nutrient sensor OGT in PVN neurons regulates feeding. Science 351, 1293-1296.
    [18]
    Lakkaraju, A., Umapathy, A., Tan, L.X., Daniele, L., Philp, N.J., Boesze-Battaglia, K., Williams, D.S., 2020. The cell biology of the retinal pigment epithelium. Prog. Retin. Eye Res., 100846.
    [19]
    Lappalainen, P., Kotila, T., Jegou, A., Romet-Lemonne, G., 2022. Biochemical and mechanical regulation of actin dynamics. Nat. Rev. Mol. Cell Biol., 836-852.
    [20]
    Lee, B.E., Suh, P.G., Kim, J.I., 2021. O-GlcNAcylation in health and neurodegenerative diseases. Exp. Mol. Med. 53, 1674-1682.
    [21]
    Lewandowski, D., Sander, C.L., Tworak, A., Gao, F., Xu, Q., Skowronska-Krawczyk, D., 2022. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog. Retin. Eye Res. 89, 101037.
    [22]
    Li, Y., Zhou, Y., Wang, P., Tao, T., Wei, L., Wang, Y., Wang, W., Zheng, Y., Jiang, Z., Qiu, T., et al., 2021. LIMK2 is required for membrane cytoskeleton reorganization of contracting airway smooth muscle. J. Genet. Genomics 48, 452-462.
    [23]
    Liu, C., Shi, Y., Li, J., Liu, X., Xiahou, Z., Tan, Z., Chen, X., Li, J., 2020. O-GlcNAcylation of myosin phosphatase targeting subunit 1 (MYPT1) dictates timely disjunction of centrosomes. J. Biol. Chem. 295, 7341-7349.
    [24]
    Ma, J., Hou, C., Wu, C., 2022. Demystifying the O-GlcNAc code: a systems view. Chem. Rev.
    [25]
    Ma, X., Li, H., He, Y., Hao, J., 2017. The emerging link between O-GlcNAcylation and neurological disorders. Cell. Mol. Life Sci. 74, 3667-3686.
    [26]
    Mayerson, P.L., Hall, M.O., 1986. Rat retinal pigment epithelial cells show specificity of phagocytosis in vitro. J. Cell Biol. 103, 299-308.
    [27]
    Mazzoni, F., Dun, Y., Vargas, J.A., Nandrot, E.F., Finnemann, S.C., 2021. Lack of the antioxidant enzyme methionine sulfoxide reductase A in mice impairs RPE phagocytosis and causes photoreceptor cone dysfunction. Redox Biol. 42, 101918.
    [28]
    Molday, R.S., Garces, F.A., Scortecci, J.F., Molday, L.L., 2022. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration. Prog. Retin. Eye Res. 89, 101036.
    [29]
    Muller, C., Charniga, C., Temple, S., Finnemann, S.C., 2018. Quantified F-actin morphology is predictive of phagocytic capacity of stem cell-derived retinal pigment epithelium. Stem Cell Rep. 10, 1075-1087.
    [30]
    Nagata, S., 2018. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36, 489-517.
    [31]
    Notomi, S., Ishihara, K., Efstathiou, N.E., Lee, J.J., Hisatomi, T., Tachibana, T., Konstantinou, E.K., Ueta, T., Murakami, Y., Maidana, D.E., et al., 2019. Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. Proc. Natl. Acad. Sci. U. S. A. 116, 23724-23734.
    [32]
    Parinot, C., Rieu, Q., Chatagnon, J., Finnemann, S.C., Nandrot, E.F., 2014. Large-scale purification of porcine or bovine photoreceptor outer segments for phagocytosis assays on retinal pigment epithelial cells. J. Vis. Exp., 52100.
    [33]
    Penberthy, K.K., Lysiak, J.J., Ravichandran, K.S., 2018. Rethinking phagocytes: clues from the retina and testes. Trends Cell Biol. 28, 317-327.
    [34]
    Pinho, T.S., Verde, D.M., Correia, S.C., Cardoso, S.M., Moreira, P.I., 2018. O-GlcNAcylation and neuronal energy status: implications for Alzheimer's disease. Ageing Res. Rev. 46, 32-41.
    [35]
    Saha, A., Bello, D., Fernandez-Tejada, A., 2021. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem. Soc. Rev. 50, 10451-10485.
    [36]
    Saito, Y., Yako, T., Otsu, W., Nakamura, S., Inoue, Y., Muramatsu, A., Nakagami, Y., Shimazawa, M., Hara, H., 2020. A triterpenoid Nrf2 activator, RS9, promotes LC3-associated phagocytosis of photoreceptor outer segments in a p62-independent manner. Free Radic. Biol. Med. 152, 235-247.
    [37]
    Sapar, M.L., Han, C., 2019. Die in pieces: how Drosophila sheds light on neurite degeneration and clearance. J. Genet. Genomics 46, 187-199.
    [38]
    Shang, P., Stepicheva, N.A., Hose, S., Zigler, J.S., Jr., Sinha, D., 2018. Primary cell cultures from the mouse retinal pigment epithelium. J. Vis. Exp., 56997.
    [39]
    Shi, Y., Yan, S., Shao, G.C., Wang, J., Jian, Y.P., Liu, B., Yuan, Y., Qin, K., Nai, S., Huang, X., et al., 2022. O-GlcNAcylation stabilizes the autophagy-initiating kinase ULK1 by inhibiting chaperone-mediated autophagy upon HPV infection. J. Biol. Chem. 298, 102341.
    [40]
    Smith, A.J., Schlichtenbrede, F.C., Tschernutter, M., Bainbridge, J.W., Thrasher, A.J., Ali, R.R., 2003. AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol. Ther. 8, 188-195.
    [41]
    Tajbakhsh, A., Gheibihayat, S.M., Askari, H., Savardashtaki, A., Pirro, M., Johnston, T.P., Sahebkar, A., 2022. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol. Ther. 238, 108282.
    [42]
    Voisin, A., Gaillard, A., Balbous, A., Leveziel, N., 2022. Proteins associated with phagocytosis alteration in retinal pigment epithelial cells derived from age-related macular degeneration patients. Antioxidants 11, 713.
    [43]
    Wang, P., Peng, C., Liu, X., Liu, H., Chen, Y., Zheng, L., Han, B., Pei, H., 2015. OGT mediated histone H2B S112 GlcNAcylation regulates DNA damage response. J. Genet. Genomics 42, 467-475.
    [44]
    Wu, D., Cai, Y., Jin, J., 2017. Potential coordination role between O-GlcNAcylation and epigenetics. Protein Cell 8, 713-723.
    [45]
    Wu, S., Lam, S.M., Li, H., Jiang, B., Sun, Z., Zhu, T., Wei, X., Zou, X., Shui, G., Sui, R., 2022. Targeted lipidomics reveals plasmalogen phosphatidylethanolamines and storage triacylglycerols as the major systemic lipid aberrations in Bietti crystalline corneoretinal dystrophy. J. Genet. Genomics 49, 380-383.
    [46]
    Yang, C., Xie, L., Gu, Q., Qiu, Q., Wu, X., Yin, L., 2019. 7-Ketocholesterol disturbs RPE cells phagocytosis of the outer segment of photoreceptor and induces inflammation through ERK signaling pathway. Exp. Eye Res. 189, 107849.
    [47]
    Yang, S., Zhou, J., Li, D., 2021. Functions and diseases of the retinal pigment epithelium. Front. Pharmacol. 12, 727870.
    [48]
    Yang, X., Qian, K., 2017. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat. Rev. Mol. Cell Biol. 18, 452-465.
    [49]
    Yu, F., Guo, S., Li, T., Ran, J., Zhao, W., Li, D., Liu, M., Yan, X., Yang, X., Zhu, X., et al., 2019. Ciliary defects caused by dysregulation of O-GlcNAc modification are associated with diabetic complications. Cell Res. 29, 171-173.
    [50]
    Yu, F., Zhang, Q., Liu, H., Liu, J., Yang, S., Luo, X., Liu, W., Zheng, H., Liu, Q., Cui, Y., et al., 2022. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov. 8, 40.
    [51]
    Yu, S., Li, C., Biswas, L., Hu, X., Liu, F., Reilly, J., Liu, X., Liu, Y., Huang, Y., Lu, Z., et al., 2017. CERKL gene knockout disturbs photoreceptor outer segment phagocytosis and causes rod-cone dystrophy in zebrafish. Hum. Mol. Genet. 26, 2335-2345.
    [52]
    Zihni, C., Georgiadis, A., Ramsden, C.M., Sanchez-Heras, E., Haas, A.J., Nommiste, B., Semenyuk, O., Bainbridge, J.W.B., Coffey, P.J., Smith, A.J., et al., 2022. Spatiotemporal control of actomyosin contractility by MRCKbeta signaling drives phagocytosis. J. Cell Biol. 221, e202012042.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads (19) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return