5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 6
Jun.  2023
Turn off MathJax
Article Contents

Epigenetic and transcriptional activation of the secretory kinase FAM20C as an oncogene in glioma

doi: 10.1016/j.jgg.2023.01.008
Funds:

This study was supported by the grants from Department of Science and Technology of Sichuan Province, China (No. 23ZDYF2212), Medico-Engineering Cooperation Funds from the University of Electronic Science and Technology of China (No. ZYGX2021YGLH209), the Department of Science and Technology of Sichuan Province (Nos. 2022NSFSC0760 and 2022JDTD0024), and the Chengdu Science and Technology Bureau (2022-YF05-01625-SN).

  • Received Date: 2022-10-27
  • Accepted Date: 2023-01-14
  • Rev Recd Date: 2023-01-03
  • Publish Date: 2023-01-25
  • Gliomas are the most prevalent and aggressive malignancies of the nervous system. Previous bioinformatic studies have revealed the crucial role of the secretory pathway kinase FAM20C in the prediction of glioma invasion and malignancy. However, little is known about the pathogenesis of FAM20C in the regulation of glioma. Here, we construct the full-length transcriptome atlas in paired gliomas and observe that 22 genes are upregulated by full-length transcriptome and differential APA analysis. Analysis of ATAC-seq data reveals that both FAM20C and NPTN are the hub genes with chromatin openness and differential expression. Further, in vitro and in vivo studies suggest that FAM20C stimulates the proliferation and metastasis of glioma cells. Meanwhile, NPTN, a novel cancer suppressor gene, counteracts the function of FAM20C by inhibiting both the proliferation and migration of glioma. The blockade of FAM20C by neutralizing antibodies results in the regression of xenograft tumors. Moreover, MAX, BRD4, MYC, and REST are found to be the potential trans-active factors for the regulation of FAM20C. Taken together, our results uncover the oncogenic role of FAM20C in glioma and shed new light on the treatment of glioma by abolishing FAM20C.
  • loading
  • [1]
    Bajkowska, K., Sumardika, I.W., Tomonobu, N., Chen, Y., Yamamoto, K.I., Kinoshita, R., Murata, H., Gede Yoni Komalasari, N.L., Jiang, F., Yamauchi, A., et al., 2020. Neuroplastinbeta-mediated upregulation of solute carrier family 22 member 18 antisense (SLC22A18AS) plays a crucial role in the epithelial-mesenchymal transition, leading to lung cancer cells' enhanced motility. Biochem. Biophys. Rep. 22, 100768.
    [2]
    Bao, Z.S., Chen, H.M., Yang, M.Y., Zhang, C.B., Yu, K., Ye, W.L., Hu, B.Q., Yan, W., Zhang, W., Akers, J., et al. ., 2014. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Front. Res.24, 1765-1773.
    [3]
    Bayega, A., Wang, Y.C., Oikonomopoulos, S., Djambazian, H., Fahiminiya, S., Ragoussis, J., 2018. Transcript profiling using long-read sequencing technologies. Methods Mol. Biol. 1783, 121-147.
    [4]
    Beesley, P.W., Herrera-Molina, R., Smalla, K.H., Seidenbecher, C., 2014. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function. J. Neurochem. 131, 268-283.
    [5]
    Bonnal, S.C., Lopez-Oreja, I., Valcarcel, J., 2020. Roles and mechanisms of alternative splicing in cancer - implications for care. Nat. Rev. Clin. Oncol. 17, 457-474.
    [6]
    Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218.
    [7]
    Carter, B., Zhao, K., 2021. The epigenetic basis of cellular heterogeneity. Nat. Rev. Genet. 22, 235-250.
    [8]
    Chen, H., Gao, F., He, M., Ding, X.F., Wong, A.M., Sze, S.C., Yu, A.C., Sun, T., Chan, A.W., Wang, X., et al., 2019. Long-read RNA sequencing identifies alternative splice variants in hepatocellular carcinoma and tumor-specific isoforms. Hepatology 70, 1011-1025.
    [9]
    Chen, T., Dent, S.Y., 2014. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15, 93-106.
    [10]
    Chen, X., Houten, S., Allette, K., Sebra, R.P., Stolovitzky, G., Losic, B., 2018. Characterization of drug-induced splicing complexity in prostate cancer cell line using long read technology. Pacific Symposium on Biocomputing 23, 8-19.
    [11]
    Cheng, Y.W., Chen, Y.M., Zhao, Q.Q., Zhao, X., Wu, Y.R., Chen, D.Z., Liao, L.D., Chen, Y., Yang, Q., Xu, L.Y., et al., 2019. Long read single-molecule real-time sequencing elucidates transcriptome-wide heterogeneity and complexity in esophageal squamous cells. Front. Genet. 10, 915.
    [12]
    Correa, B.R., de Araujo, P.R., Qiao, M., Burns, S.C., Chen, C., Schlegel, R., Agarwal, S., Galante, P.A., Penalva, L.O., 2016. Functional genomics analyses of RNA-binding proteins reveal the splicing regulator SNRPB as an oncogenic candidate in glioblastoma. Genome Biol. 17, 125.
    [13]
    Dhara, S., Chhangawala, S., Chintalapudi, H., Askan, G., Aveson, V., Massa, A.L., Zhang, L., Torres, D., Makohon-Moore, A.P., Lecomte, N., et al., 2021. Pancreatic cancer prognosis is predicted by an ATAC-array technology for assessing chromatin accessibility. Nat. Commun., 12, 3044.
    [14]
    Drexler, H.L., Choquet, K., Churchman, L.S., 2020. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985-998 e988.
    [15]
    Du, S., Guan, S., Zhu, C., Guo, Q., Cao, J., Guan, G., Cheng, W., Cheng, P., Wu, A., 2020. Secretory pathway kinase FAM20C, a marker for glioma invasion and malignancy, predicts poor prognosis of glioma. OncoTargets Ther. 13, 11755-11768.
    [16]
    Elkon, R., Ugalde, A.P., Agami, R., 2013. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496-506.
    [17]
    Feng, J., Zhou, J., Zhao, L., Wang, X., Ma, D., Xu, B., Xie, F., Qi, X., Chen, G., Zhao, H., et al., 2021. Fam20C overexpression predicts poor outcomes and is a diagnostic biomarker in lower-grade glioma. Front. Genet. 12, 757014.
    [18]
    Fuentes-Fayos, A.C., Vazquez-Borrego, M.C., Jimenez-Vacas, J.M., Bejarano, L., Pedraza-Arevalo, S., F, L.L., Blanco-Acevedo, C., Sanchez-Sanchez, R., Reyes, O., Ventura, S., Solivera, J., Breunig, J.J., Blasco, M.A., Gahete, M.D., Castano, J.P., Luque, R.M., 2020. Splicing machinery dysregulation drives glioblastoma development/aggressiveness: oncogenic role of SRSF3. Brain 143, 3273-3293.
    [19]
    Gruber, A.J., Zavolan, M., 2019. Alternative cleavage and polyadenylation in health and disease. Nat. Rev. Genet. 20, 599-614.
    [20]
    Huang, K.K., Huang, J., Wu, J.K.L., Lee, M., Tay, S.T., Kumar, V., Ramnarayanan, K., Padmanabhan, N., Xu, C., Tan, A.L.K., et al., 2021. Long-read transcriptome sequencing reveals abundant promoter diversity in distinct molecular subtypes of gastric cancer. Genome Biol. 22, 44.
    [21]
    Jaworski, E., Routh, A., 2017. Parallel ClickSeq and Nanopore sequencing elucidates the rapid evolution of defective-interfering RNAs in Flock House virus. PLoS Pathog. 13, e1006365.
    [22]
    Jing, Y., Zhang, Y., Zhu, H., Zhang, K., Cai, M.C., Ma, P., Shen, P., Zhang, Z., Shao, M., Wang, J., et al., 2019. Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer. Oncogene 38, 3047-3060.
    [23]
    Kumar, P., Kiran, S., Saha, S., Su, Z., Paulsen, T., Chatrath, A., Shibata, Y., Shibata, E., Dutta, A., 2020. ATAC-seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci. Adv. 6, eaba2489.
    [24]
    Li, X., Nie, S., Lv, Z., Ma, L., Song, Y., Hu, Z., Hu, X., Liu, Z., Zhou, G., Dai, Z., et al., 2021. Overexpression of Annexin A2 promotes proliferation by forming a Glypican 1/c-Myc positive feedback loop: prognostic significance in human glioma. Cell Death Dis. 12, 261.
    [25]
    Lian, B., Hu, X., Shao, Z.M., 2019. Unveiling novel targets of paclitaxel resistance by single molecule long-read RNA sequencing in breast cancer. Sci. Rep. 9, 6032.
    [26]
    Lim, M., Xia, Y., Bettegowda, C., Weller, M., 2018. Current state of immunotherapy for glioblastoma. Nat. Rev. Clin. Oncol. 15, 422-442.
    [27]
    Liu, F., Wang, L., Perna, F., Nimer, S.D., 2016. Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape.Nat. Rev. Cancer 16, 359-372.
    [28]
    Liu, S., Wu, I., Yu, Y.P., Balamotis, M., Ren, B., Ben Yehezkel, T., Luo, J.H., 2021. Targeted transcriptome analysis using synthetic long read sequencing uncovers isoform reprograming in the progression of colon cancer. Commun. Biol. 4, 506.
    [29]
    Mall, R., Cerulo, L., Garofano, L., Frattini, V., Kunji, K., Bensmail, H., Sabedot, T.S., Noushmehr, H., Lasorella, A., Iavarone, A., et al., 2018. RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes. Nucleic Acids Res. 46, e39.
    [30]
    Mandal, A.S., Romero-Garcia, R., Hart, M.G., Suckling, J., 2020. Genetic, cellular, and connectomic characterization of the brain regions commonly plagued by glioma. Brain : J. Neurol. 143, 3294-3307.
    [31]
    Manjunath, M., Yan, J., Youn, Y., Drucker, K.L., Kollmeyer, T.M., McKinney, A.M., Zazubovich, V., Zhang, Y., Costello, J.F., Eckel-Passow, J., et al., 2021. Functional analysis of low-grade glioma genetic variants predicts key target genes and transcription factors. Neuro Oncol. 23, 638-649.
    [32]
    Martire, S., Banaszynski, L.A., 2020. The roles of histone variants in fine-tuning chromatin organization and function. Nat. Rev. Mol. Cell Biol. 21, 522-541.
    [33]
    Masamha, C.P., Wagner, E.J., 2018. The contribution of alternative polyadenylation to the cancer phenotype. Carcinogenesis 39, 2-10.
    [34]
    Masamha, C.P., Xia, Z., Yang, J., Albrecht, T.R., Li, M., Shyu, A.B., Li, W., Wagner, E.J., 2014. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature 510, 412-416.
    [35]
    McNeill, R.S., Canoutas, D.A., Stuhlmiller, T.J., Dhruv, H.D., Irvin, D.M., Bash, R.E., Angus, S.P., Herring, L.E., Simon, J.M., Skinner, K.R., et al., 2017. Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma. Neuro Oncol. 19, 1469-1480.
    [36]
    Mendez, F.M., Nunez, F.J., Garcia-Fabiani, M.B., Haase, S., Carney, S., Gauss, J.C., Becher, O.J., Lowenstein, P.R., Castro, M.G., 2020. Epigenetic reprogramming and chromatin accessibility in pediatric diffuse intrinsic pontine gliomas: a neural developmental disease. Neuro Oncol. 22, 195-206.
    [37]
    Molinaro, A.M., Taylor, J.W., Wiencke, J.K., Wrensch, M.R., 2019. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 15, 405-417.
    [38]
    Nagaraja, S., Vitanza, N.A., Woo, P.J., Taylor, K.R., Liu, F., Zhang, L., Li, M., Meng, W., Ponnuswami, A., Sun, W., et al., 2017. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell 31, 635-652 e636.
    [39]
    Narayanan, A., Blanco-Carmona, E., Demirdizen, E., Sun, X., Herold-Mende, C., Schlesner, M., Turcan, S., 2020. Nuclei isolation from fresh frozen brain tumors for single-nucleus RNA-seq and ATAC-seq. JoVE : JoVE(162).
    [40]
    Oka, M., Xu, L., Suzuki, T., Yoshikawa, T., Sakamoto, H., Uemura, H., Yoshizawa, A.C., Suzuki, Y., Nakatsura, T., Ishihama, Y., et al., 2021. Aberrant splicing isoforms detected by full-length transcriptome sequencing as transcripts of potential neoantigens in non-small cell lung cancer. Genome Biol. 22, 9.
    [41]
    Oki, S., Ohta, T., Shioi, G., Hatanaka, H., Ogasawara, O., Okuda, Y., Kawaji, H., Nakaki, R., Sese, J., Meno, C., 2018. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. 19.
    [42]
    Palma-Lara, I., Perez-Ramirez, M., Garcia Alonso-Themann, P., Espinosa-Garcia, A.M., Godinez-Aguilar, R., Bonilla-Delgado, J., Lopez-Ornelas, A., Victoria-Acosta, G., Olguin-Garcia, M.G., Moreno, J., et al., 2021. FAM20C overview: classic and novel targets, pathogenic variants and raine syndrome phenotypes. Int. J. Mol. Sci. 22.
    [43]
    Pan, Y., Hysinger, J.D., Barron, T., Schindler, N.F., Cobb, O., Guo, X., Yalcin, B., Anastasaki, C., Mulinyawe, S.B., Ponnuswami, A., et al., 2021. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594, 277-282.
    [44]
    Phillips, R.E., Soshnev, A.A., Allis, C.D., 2020. Epigenomic reprogramming as a driver of malignant glioma. Cancer Cell 38, 647-660.
    [45]
    Pradella, D., Naro, C., Sette, C., Ghigna, C., 2017. EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol. Cancer 16, 8.
    [46]
    Rheinbay, E., Nielsen, M.M., Abascal, F., Wala, J.A., Shapira, O., Tiao, G., Hornshoj, H., Hess, J.M., Juul, R.I., Lin, Z., et al., 2020. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102-111.
    [47]
    Ryall, S., Zapotocky, M., Fukuoka, K., Nobre, L., Guerreiro Stucklin, A., Bennett, J., Siddaway, R., Li, C., Pajovic, S., Arnoldo, A., et al., 2020. Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell 37, 569-583 e565.
    [48]
    Sakamoto, Y., Sereewattanawoot, S., Suzuki, A., 2020. A new era of long-read sequencing for cancer genomics. J. Hum. Genet. 65, 3-10.
    [49]
    Shin, H.M., Kim, G., Kim, S., Sim, J.H., Choi, J., Kim, M., Kwon, M., Ye, S.K., Lee, D.S., Cho, S.W., et al., 2021. Chromatin accessibility of circulating CD8(+) T cells predicts treatment response to PD-1 blockade in patients with gastric cancer. Nat. Commun. 12, 975.
    [50]
    Shu, S., Wu, H.J., Ge, J.Y., Zeid, R., Harris, I.S., Jovanovic, B., Murphy, K., Wang, B., Qiu, X., Endress, J.E., et al., 2020. Synthetic lethal and resistance interactions with BET bromodomain inhibitors in triple-negative breast cancer. Mol. Cell 78, 1096-1113 e1098.
    [51]
    Siegelin, M.D., Schneider, E., Westhoff, M.A., Wirtz, C.R., Karpel-Massler, G., 2021. Current state and future perspective of drug repurposing in malignant glioma. Semin. Cancer Biol. 68, 92-104.
    [52]
    Singh, M., Al-Eryani, G., Carswell, S., Ferguson, J.M., Blackburn, J., Barton, K., Roden, D., Luciani, F., Giang Phan, T., Junankar, S., et al., 2019. High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 10, 3120.
    [53]
    Sumardika, I.W., Chen, Y., Tomonobu, N., Kinoshita, R., Ruma, I.M.W., Sato, H., Kondo, E., Inoue, Y., Yamauchi, A., Murata, H., et al., 2019. Neuroplastin-beta mediates S100A8/A9-induced lung cancer disseminative progression. Mol. Carcinog. 58, 980-995.
    [54]
    Tagliabracci, V.S., Engel, J.L., Wen, J., Wiley, S.E., Worby, C.A., Kinch, L.N., Xiao, J., Grishin, N.V., Dixon, J.E., 2012. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336, 1150-1153.
    [55]
    Talbert, P.B., Meers, M.P., Henikoff, S., 2019. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat. Rev. Genet. 20, 283-297.
    [56]
    Tang, Z., Li, C., Kang, B., Gao, G., Zhang, Z., 2017. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45, W98-W102.
    [57]
    Tome-Garcia, J., Erfani, P., Nudelman, G., Tsankov, A.M., Katsyv, I., Tejero, R., Bin, Z., Walsh, M., Friedel, R.H., Zaslavsky, E., et al., 2018. Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat. Commun. 9, 4020.
    [58]
    Venkataramani, V., Tanev, D.I., Kuner, T., Wick, W., Winkler, F., 2021. Synaptic input to brain tumors: clinical implications. Neuro Oncol. 23, 23-33.
    [59]
    Venkataramani, V., Tanev, D.I., Strahle, C., Studier-Fischer, A., Fankhauser, L., Kessler, T., Korber, C., Kardorff, M., Ratliff, M., Xie, R., et al., 2019. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532-538.
    [60]
    Venkatesh, H.S., Johung, T.B., Caretti, V., Noll, A., Tang, Y., Nagaraja, S., Gibson, E.M., Mount, C.W., Polepalli, J., Mitra, S.S., et al., 2015. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803-816.
    [61]
    Venkatesh, H.S., Morishita, W., Geraghty, A.C., Silverbush, D., Gillespie, S.M., Arzt, M., Tam, L.T., Espenel, C., Ponnuswami, A., Ni, L., Woo, P.J., et al., 2019. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539-545.
    [62]
    Venkatesh, H.S., Tam, L.T., Woo, P.J., Lennon, J., Nagaraja, S., Gillespie, S.M., Ni, J., Duveau, D.Y., Morris, P.J., Zhao, J.J., et al., 2017. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533-537.
    [63]
    Viehweger, A., Krautwurst, S., Lamkiewicz, K., Madhugiri, R., Ziebuhr, J., Holzer, M., Marz, M., 2019. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res. 29, 1545-1554.
    [64]
    Wang, J., Huang, T.Y., Hou, Y., Bartom, E., Lu, X., Shilatifard, A., Yue, F., Saratsis, A., 2021a. Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. Sci. Adv. 7.
    [65]
    Wang, L., Babikir, H., Muller, S., Yagnik, G., Shamardani, K., Catalan, F., Kohanbash, G., Alvarado, B., Di Lullo, E., Kriegstein, A., et al., 2019. The phenotypes of proliferating glioblastoma cells reside on a single Axis of variation. Cancer Discov. 9, 1708-1719.
    [66]
    Wang, L.B., Karpova, A., Gritsenko, M.A., Kyle, J.E., Cao, S., Li, Y., Rykunov, D., Colaprico, A., Rothstein, J.H., Hong, R., et al., 2021b. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39, 509-528 e520.
    [67]
    Ward, A.B., Keeton, A.B., Chen, X., Mattox, T.E., Coley, A.B., Maxuitenko, Y.Y., Buchsbaum, D.J., Randall, T.D., Zhou, G., Piazza, G.A., 2020. Enhancing anticancer activity of checkpoint immunotherapy by targeting RAS. MedComm. 1, 121-128.
    [68]
    Wirsching, H.G., Weller, M., 2020. Does neuronal activity promote glioma progression? Trends Cancer 6, 1-3.
    [69]
    Xu, R., Tan, H., Zhang, J., Yuan, Z., Xie, Q., Zhang, L., 2021. Fam20C in human diseases: emerging biological functions and therapeutic implications. Front. Mol. Biosci. 8, 790172.
    [70]
    Yang, S.W., Li, L., Connelly, J.P., Porter, S.N., Kodali, K., Gan, H., Park, J.M., Tacer, K.F., Tillman, H., Peng, J., et al., 2020. A cancer-specific ubiquitin ligase drives mRNA alternative polyadenylation by ubiquitinating the mRNA 3' end processing complex. Mol. Cell 77, 1206-1221 e1207.
    [71]
    Yu, K., Lin, C.J., Hatcher, A., Lozzi, B., Kong, K., Huang-Hobbs, E., Cheng, Y.T., Beechar, V.B., Zhu, W., Zhang, Y., et al., 2020. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578, 166-171.
    [72]
    Zhao, L., Zhang, H., Kohnen, M.V., Prasad, K., Gu, L., Reddy, A.S.N., 2019. Analysis of transcriptome and epitranscriptome in plants using PacBio iso-seq and nanopore-based direct RNA sequencing. Front. Genet. 10, 253.
    [73]
    Zhao, R., Fu, L., Yuan, Z., Liu, Y., Zhang, K., Chen, Y., Wang, L., Sun, D., Chen, L., Liu, B., et al., 2021a. Discovery of a novel small-molecule inhibitor of Fam20C that induces apoptosis and inhibits migration in triple negative breast cancer. Eur. J. Med. Chem. 210, 113088.
    [74]
    Zhao, Z., Zhang, K.N., Wang, Q., Li, G., Zeng, F., Zhang, Y., Wu, F., Chai, R., Wang, Z., Zhang, C., et al., 2021b. Chinese glioma genome atlas (CGGA): a comprehensive resource with functional genomic data from Chinese glioma patients. Dev. Reprod. Biol.
    [75]
    Zhou, X., Wang, R., Li, X., Yu, L., Hua, D., Sun, C., Shi, C., Luo, W., Rao, C., Jiang, Z., et al., 2019. Splicing factor SRSF1 promotes gliomagenesis via oncogenic splice-switching of MYO1B. J. Clin. Invest. 129, 676-693.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (261) PDF downloads (22) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return