5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 5
May  2023
Turn off MathJax
Article Contents

A strategy for uncovering germline variants altering anti-tumor CD8 T cell response

doi: 10.1016/j.jgg.2023.01.001
Funds:

rner for helpful discussions and advice. We thank Simon Mole, Simone Hamann, Birgitte Salzmann, Birgitte Curdt, Martina Weig and Karolin Zachmann for the technical support.

hder for providing the OT-I mice, Marc-André

The authors thank Ambry Genetics for providing aggregated and annonymized germline genotyping data through the “AmbryShare” Program, Alexander Flü

gel, Michael P. Schö

cuyer for flow cytometry and comments on the manuscript, Francesca Odoardi, Dimitri Lodygin and Henrike Kö

n, Jorge F Alberto, Jean-Louis Gueant, David Meyre, Jean-Marc Alberto, for supporting this work, Fred Lü

  • Received Date: 2022-10-28
  • Accepted Date: 2023-01-03
  • Rev Recd Date: 2022-12-22
  • Publish Date: 2023-01-20
  • Among many factors known to alter the outcomes of T cell receptor (TCR)-induced proximal signaling, the role of human germline variants in dictating the individuality of the anti-tumor CD8 T cell response has remained challenging to address. Here, we describe a convenient strategy for molecular and functional characterization of phosphotyrosine-altering non-synonymous single nucleotide variations (pTyr-SNVs) that directly impact TCR-induced proximal phosphotyrosine motif-based signaling pathways. We devise an experimental co-cultivation set-up comprising a C57BL/6 mouse-derived metastatic melanoma cell line engineered to constitutively present ovalbumin (OVA) antigens and retrovirally engineered syngeneic major histocompatibility complex (MHC) Class I restricted OVA TCR-transgenic CD8 T cells (OT-I). Using the synthetic version of pTyr-SNV rs1178800678-G/T-encoding integrin alpha 4 (ITGA4) p.S1027I variant as a prototype, we show that under identical TCR stimulation conditions, genetically determined membrane-proximal immunoreceptor tyrosin activation motif (ITAM) results in increased tyrosine phosphorylation of 70 kDa zeta-chain-associated protein (ZAP70) and the levels of cytotoxic effector molecule granzyme B (GZMB), which in turn result in enhanced cytotoxic activity against metastatic melanoma cell line. This strategy paves the way for rapid molecular and functional characterization of anti-tumor immune response-linked germline pTyr-SNVs so as to improve our understanding of the genetic basis of individual-to-individual differences in anti-tumor CD8 T cell response.
  • loading
  • [1]
    Anzalone, A. V, Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., Liu, D.R., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    [2]
    Beziat, V., Rapaport, F., Hu, J., Titeux, M., Bonnet des Claustres, M., Bourgey, M., Griffin, H., Bandet, E., Ma, C.S., Sherkat, R., Rokni-Zadeh, H., Louis, D.M., Changi-Ashtiani, M., Delmonte, O.M., Fukushima, T., Habib, T., Guennoun, A., Khan, T., Bender, N., Rahman, M., About, F., Yang, R., Rao, G., Rouzaud, C., Li, J., Shearer, D., Balogh, K., Al Ali, F., Ata, M., Dabiri, S., Momenilandi, M., Nammour, J., Alyanakian, M.-A., Leruez-Ville, M., Guenat, D., Materna, M., Marcot, L., Vladikine, N., Soret, C., Vahidnezhad, H., Youssefian, L., Saeidian, A.H., Uitto, J., Catherinot, E., Navabi, S.S., Zarhrate, M., Woodley, D.T., Jeljeli, M., Abraham, T., Belkaya, S., Lorenzo, L., Rosain, J., Bayat, M., Lanternier, F., Lortholary, O., Zakavi, F., Gros, P., Orth, G., Abel, L., Pretet, J.-L., Fraitag, S., Jouanguy, E., Davis, M.M., Tangye, S.G., Notarangelo, L.D., Marr, N., Waterboer, T., Langlais, D., Doorbar, J., Hovnanian, A., Christensen, N., Bossuyt, X., Shahrooei, M., Casanova, J.-L., 2021. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell 184, 3812-3828.e30.
    [3]
    Bousfiha, A., Jeddane, L., Picard, C., Al-Herz, W., Ailal, F., Chatila, T., Cunningham-Rundles, C., Etzioni, A., Franco, J.L., Holland, S.M., Klein, C., Morio, T., Ochs, H.D., Oksenhendler, E., Puck, J., Torgerson, T.R., Casanova, J.-L., Sullivan, K.E., Tangye, S.G., 2020. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. Journal of Clinical Immunology 40, 66-81.
    [4]
    Chemnitz, J.M., Parry, R. V, Nichols, K.E., June, C.H., Riley, J.L., 2004. SHP-1 and SHP-2 Associate with Immunoreceptor Tyrosine-Based Switch Motif of Programmed Death 1 upon Primary Human T Cell Stimulation, but Only Receptor Ligation Prevents T Cell Activation. The Journal of Immunology 173, 945 LP - 954.
    [5]
    Daud, A.I., Loo, K., Pauli, M.L., Sanchez-Rodriguez, R., Sandoval, P.M., Taravati, K., Tsai, K., Nosrati, A., Nardo, L., Alvarado, M.D., Algazi, A.P., Pampaloni, M.H., Lobach, I. V, Hwang, J., Pierce, R.H., Gratz, I.K., Krummel, M.F., Rosenblum, M.D., 2016. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. The Journal of Clinical Investigation 126, 3447-3452.
    [6]
    Erdag, G., Schaefer, J.T., Smolkin, M.E., Deacon, D.H., Shea, S.M., Dengel, L.T., Patterson, J.W., Slingluff, C.L., 2012. Immunotype and Immunohistologic Characteristics of Tumor-Infiltrating Immune Cells Are Associated with Clinical Outcome in Metastatic Melanoma. Cancer Research 72, 1070 LP - 1080.
    [7]
    Feucht, J., Sun, J., Eyquem, J., Ho, Y.-J., Zhao, Z., Leibold, J., Dobrin, A., Cabriolu, A., Hamieh, M., Sadelain, M., 2019. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nature Medicine 25, 82-88.
    [8]
    Flugel, A., Willem, M., Berkowicz, T., Wekerle, H., 1999. Gene transfer into CD4+ T lymphocytes: Green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses. Nature Medicine 5, 843-847.
    [9]
    Graham, A.L., 2021. Naturalizing mouse models for immunology. Nature Immunology 22, 111-117. https://doi.org/10.1038/s41590-020-00857-2
    [10]
    Guedan, S., Madar, A., Casado-Medrano, V., Shaw, C., Wing, A., Liu, F., Young, R.M., June, C.H., Posey Jr., A.D., 2020. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. The Journal of Clinical Investigation 130, 3087-3097.
    [11]
    He, X., Xu, C., 2020. Immune checkpoint signaling and cancer immunotherapy. Cell Research 30, 660-669.
    [12]
    Kagoya, Y., Tanaka, S., Guo, T., Anczurowski, M., Wang, C.-H., Saso, K., Butler, M.O., Minden, M.D., Hirano, N., 2018. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nature medicine 24, 352-359.
    [13]
    Kent, A., Longino, N. V, Christians, A., Davila, E., 2021. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Frontiers in Immunology 12, 1380.
    [14]
    Kim, H.K., Yu, G., Park, J., Min, S., Lee, S., Yoon, S., Kim, H.H., 2021. Predicting the efficiency of prime editing guide RNAs in human cells. Nature Biotechnology 39, 198-206.
    [15]
    Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Cowey, C.L., Lao, C.D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P.F., Hill, A., Wagstaff, J., Carlino, M.S., Haanen, J.B., Maio, M., Marquez-Rodas, I., McArthur, G.A., Ascierto, P.A., Long, G. V, Callahan, M.K., Postow, M.A., Grossmann, K., Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L.M., Horak, C., Hodi, F.S., Wolchok, J.D., 2015. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. New England Journal of Medicine 373, 23-34.
    [16]
    Meng, X., Jing, R., Qian, L., Zhou, C., Sun, J., 2020. Engineering Cytoplasmic Signaling of CD28ζ CARs for Improved Therapeutic Functions. Frontiers in Immunology 11, 1046.
    [17]
    Mocsai, A., Abram, C.L., Jakus, Z., Hu, Y., Lanier, L.L., Lowell, C.A., 2006. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nature Immunology 7, 1326-1333.
    [18]
    Notarangelo, L.D., Bacchetta, R., Casanova, J.-L., Su, H.C., 2020. Human inborn errors of immunity: An expanding universe. Science Immunology 5, eabb1662.
    [19]
    Ogishi, M., Yang, R., Aytekin, C., Langlais, D., Bourgey, M., Khan, T., Ali, F.Al, Rahman, M., Delmonte, O.M., Chrabieh, M., Zhang, P., Gruber, C., Pelham, S.J., Spaan, A.N., Rosain, J., Lei, W.-T., Drutman, S., Hellmann, M.D., Callahan, M.K., Adamow, M., Wong, P., Wolchok, J.D., Rao, G., Ma, C.S., Nakajima, Y., Yaguchi, T., Chamoto, K., Williams, S.C., Emile, J.-F., Rozenberg, F., Glickman, M.S., Rapaport, F., Kerner, G., Allington, G., Tezcan, I., Cagdas, D., Hosnut, F.O., Dogu, F., Ikinciogullari, A., Rao, V.K., Kainulainen, L., Beziat, V., Bustamante, J., Vilarinho, S., Lifton, R.P., Boisson, B., Abel, L., Bogunovic, D., Marr, N., Notarangelo, L.D., Tangye, S.G., Honjo, T., Gros, P., Boisson-Dupuis, S., Casanova, J.-L., 2021. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nature Medicine.
    [20]
    Prasad, K. V, Cai, Y.C., Raab, M., Duckworth, B., Cantley, L., Shoelson, S.E., Rudd, C.E., 1994. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proceedings of the National Academy of Sciences 91, 2834 LP - 2838.
    [21]
    Perez-Villar, J.J., Whitney, G.S., Bowen, M.A., Hewgill, D.H., Aruffo, A.A., Kanner, S.B., 1999. CD5 negatively regulates the T-cell antigen receptor signal transduction pathway: involvement of SH2-containing phosphotyrosine phosphatase SHP-1. Mol. Cell Biol. 19, 2903-2912.
    [22]
    Seliger, B., Wollscheid, U., Momburg, F., Blankenstein, T., Huber, C., 2001. Characterization of the Major Histocompatibility Complex Class I Deficiencies in B16 Melanoma Cells. Cancer Research 61, 1095 LP - 1099.
    [23]
    Stumpf, M., Zhou, X., Chikuma, S., Bluestone, J.A., 2014. Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. European Journal of Immunology 44, 1737-1746.
    [24]
    Ulaganathan, V.K., Sperl, B., Rapp, U.R., Ullrich, A., 2015. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 528, 570-574.
    [25]
    Waldman, A.D., Fritz, J.M., Lenardo, M.J., 2020. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology 20, 651-668.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads (10) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return