[1] |
Acs, P., Bauer, P.O., Mayer, B., Bera, T., Macallister, R., Mezey, E., Pastan, I., 2015. A novel form of ciliopathy underlies hyperphagia and obesity in ankrd26 knockout mice. Brain Struct. Funct. 220, 1511-1528.
|
[2] |
Ait-Lounis, A., Baas, D., Barras, E., Benadiba, C., Charollais, A., Nlend Nlend, R., Liegeois, D., Meda, P., Durand, B., Reith, W., 2007. Novel function of the ciliogenic transcription factor rfx3 in development of the endocrine pancreas. Diabetes 56, 950-959.
|
[3] |
Aksanov, O., Green, P., Birk, R.Z., 2014. Bbs4 directly affects proliferation and differentiation of adipocytes. Cell. Mol. Life Sci. 71, 3381-3392.
|
[4] |
Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L.B.,Christensen, S.T., 2019. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15, 199-219.
|
[5] |
Arrighi, N., Lypovetska, K., Moratal, C., Giorgetti-Peraldi, S., Dechesne, C.A., Dani, C.,Peraldi, P., 2017. The primary cilium is necessary for the differentiation and the maintenance of human adipose progenitors into myofibroblasts. Sci. Rep. 7, 15248.
|
[6] |
Benzinou, M., Walley, A., Lobbens, S., Charles, M.A., Jouret, B., Fumeron, F., Balkau, B., Meyre, D.,Froguel, P., 2006. Bardet-biedl syndrome gene variants are associated with both childhood and adult common obesity in French caucasians. Diabetes 55, 2876-2882.
|
[7] |
Berbari, N.F., Lewis, J.S., Bishop, G.A., Askwith, C.C.,Mykytyn, K., 2008. Bardet-biedl syndrome proteins are required for the localization of g protein-coupled receptors to primary cilia. Proc. Natl. Acad. Sci. U.S.A. 105, 4242-4246.
|
[8] |
Berbari, N.F., O'Connor, A.K., Haycraft, C.J.,Yoder, B.K., 2009. The primary cilium as a complex signaling center. Curr. Biol. 19, R526-R535.
|
[9] |
Berbari, N.F., Pasek, R.C., Malarkey, E.B., Yazdi, S.M., McNair, A.D., Lewis, W.R., Nagy, T.R., Kesterson, R.A.,Yoder, B.K., 2013. Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc. Natl. Acad. Sci. U.S.A. 110, 7796-7801.
|
[10] |
Boehlke, C., Bashkurov, M., Buescher, A., Krick, T., John, A.K., Nitschke, R., Walz, G.,Kuehn, E.W., 2010. Differential role of rab proteins in ciliary trafficking: rab23 regulates smoothened levels. J. Cell Sci. 123, 1460-1467.
|
[11] |
Braun, D.A.,Hildebrandt, F., 2017. Ciliopathies. Cold Spring Harbor Perspect. Biol. 9.
|
[12] |
Cano, D.A., Sekine, S.,Hebrok, M., 2006. Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis. Gastroenterology 131, 1856-1869.
|
[13] |
Chouchani, E.T.,Kajimura, S., 2019. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 1, 189-200.
|
[14] |
Conde, J., Scotece, M., Gomez, R., Lopez, V., Gomez-Reino, J.J., Lago, F.,Gualillo, O., 2011. Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. Biofactors 37, 413-420.
|
[15] |
Cook, L.B., Ophardt, H.D., Shen, R., Pratt, B.H.,Galbier, L.A., 2021. Transcriptome analysis of ciliary-dependent mch signaling in differentiating 3t3-l1 pre-adipocytes. Sci. Rep. 11, 4880.
|
[16] |
Corbit, K.C., Shyer, A.E., Dowdle, W.E., Gaulden, J., Singla, V., Chen, M.H., Chuang, P.T.,Reiter, J.F., 2008. Kif3a constrains beta-catenin-dependent wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70-76.
|
[17] |
Dalbay, M.T., Thorpe, S.D., Connelly, J.T., Chapple, J.P.,Knight, M.M., 2015. Adipogenic differentiation of hmscs is mediated by recruitment of igf-1r onto the primary cilium associated with cilia elongation. Stem Cell. 33, 1952-1961.
|
[18] |
Davenport, J.R., Watts, A.J., Roper, V.C., Croyle, M.J., van Groen, T., Wyss, J.M., Nagy, T.R., Kesterson, R.A.,Yoder, B.K., 2007. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586-1594.
|
[19] |
Dyson, J.M., Conduit, S.E., Feeney, S.J., Hakim, S., DiTommaso, T., Fulcher, A.J., Sriratana, A., Ramm, G., Horan, K.A., Gurung, R., et al., 2017. Inpp5e regulates phosphoinositide-dependent cilia transition zone function. J. Cell Biol. 216, 247-263.
|
[20] |
Favaretto, F., Milan, G., Collin, G.B., Marshall, J.D., Stasi, F., Maffei, P., Vettor, R.,Naggert, J.K., 2014. Glut4 defects in adipose tissue are early signs of metabolic alterations in alms1gt/gt, a mouse model for obesity and insulin resistance. PLoS One 9, e109540.
|
[21] |
Forcioli-Conti, N., Lacas-Gervais, S., Dani, C.,Peraldi, P., 2015. The primary cilium undergoes dynamic size modifications during adipocyte differentiation of human adipose stem cells. Biochem. Biophys. Res. Commun. 458, 117-122.
|
[22] |
Friedman, J.M., 2019. Leptin and the endocrine control of energy balance. Nat. Metab. 1, 754-764.
|
[23] |
Garcia, G., 3rd, Raleigh, D.R.,Reiter, J.F., 2018. How the ciliary membrane is organized inside-out to communicate outside-in. Curr. Biol. 28, R421-R434.
|
[24] |
Garcia-Gonzalo, F.R., Phua, S.C., Roberson, E.C., Garcia, G., 3rd, Abedin, M., Schurmans, S., Inoue, T.,Reiter, J.F., 2015. Phosphoinositides regulate ciliary protein trafficking to modulate hedgehog signaling. Dev. Cell 34, 400-409.
|
[25] |
Garfield, A.S., Li, C., Madara, J.C., Shah, B.P., Webber, E., Steger, J.S., Campbell, J.N., Gavrilova, O., Lee, C.E., Olson, D.P., et al., 2015. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18, 863-871.
|
[26] |
Gerdes, J.M., Christou-Savina, S., Xiong, Y., Moede, T., Moruzzi, N., Karlsson-Edlund, P., Leibiger, B., Leibiger, I.B., Ostenson, C.G., Beales, P.L., et al., 2014. Ciliary dysfunction impairs beta-cell insulin secretion and promotes development of type 2 diabetes in rodents. Nat. Commun. 5, 5308.
|
[27] |
Ghaben, A.L.,Scherer, P.E., 2019. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242-258.
|
[28] |
Gohlke, S., Mancini, C., Garcia-Carrizo, F.,Schulz, T.J., 2021. Loss of the ciliary gene bbs4 results in defective thermogenesis due to metabolic inefficiency and impaired lipid metabolism. Faseb. J. 35, e21966.
|
[29] |
Hampshire, D.J., Ayub, M., Springell, K., Roberts, E., Jafri, H., Rashid, Y., Bond, J., Riley, J.H.,Woods, C.G., 2006. Morm syndrome (mental retardation, truncal obesity, retinal dystrophy and micropenis), a new autosomal recessive disorder, links to 9q34. Eur. J. Hum. Genet. 14, 543-548.
|
[30] |
Han, Y.M., Kang, G.M., Byun, K., Ko, H.W., Kim, J., Shin, M.S., Kim, H.K., Gil, S.Y., Yu, J.H., Lee, B., et al., 2014. Leptin-promoted cilia assembly is critical for normal energy balance. J. Clin. Invest. 124, 2193-2197.
|
[31] |
Hao, K., Chen, Y., Yan, X.,Zhu, X., 2021. Cilia locally synthesize proteins to sustain their ultrastructure and functions. Nat. Commun. 12, 6971.
|
[32] |
Hearn, T., 2019. Alms1 and alstrom syndrome: a recessive form of metabolic, neurosensory and cardiac deficits. J. Mol. Med (Berl) 97, 1-17.
|
[33] |
Heydet, D., Chen, L.X., Larter, C.Z., Inglis, C., Silverman, M.A., Farrell, G.C.,Leroux, M.R., 2013. A truncating mutation of alms1 reduces the number of hypothalamic neuronal cilia in obese mice. Dev. Neurobiol. 73, 1-13.
|
[34] |
Hilgendorf, K.I., Johnson, C.T., Mezger, A., Rice, S.L., Norris, A.M., Demeter, J., Greenleaf, W.J., Reiter, J.F., Kopinke, D., Jackson, P.K., 2019. Omega-3 fatty acids activate ciliary ffar4 to control adipogenesis. Cell 179, 1289-1305 e1221.
|
[35] |
Huang-Doran, I.,Semple, R.K., 2010. Knockdown of the alstrom syndrome-associated gene alms1 in 3t3-l1 preadipocytes impairs adipogenesis but has no effect on cell-autonomous insulin action. Int. J. Obes. 34, 1554-1558.
|
[36] |
Jacoby, M., Cox, J.J., Gayral, S., Hampshire, D.J., Ayub, M., Blockmans, M., Pernot, E., Kisseleva, M.V., Compere, P., Schiffmann, S.N., et al., 2009. Inpp5e mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat. Genet. 41, 1027-1031.
|
[37] |
Jais, A.,Bruning, J.C., 2017. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 127, 24-32.
|
[38] |
Jais, A., Paeger, L., Sotelo-Hitschfeld, T., Bremser, S., Prinzensteiner, M., Klemm, P., Mykytiuk, V., Widdershooven, P.J.M., Vesting, A.J., Grzelka, K., et al., 2020. Pnoc(arc) neurons promote hyperphagia and obesity upon high-fat-diet feeding. Neuron 106, 1009-1025 e1010.
|
[39] |
Jenkins, D., Baynam, G., De Catte, L., Elcioglu, N., Gabbett, M.T., Hudgins, L., Hurst, J.A., Jehee, F.S., Oley, C.,Wilkie, A.O., 2011. Carpenter syndrome: extended rab23 mutation spectrum and analysis of nonsense-mediated mrna decay. Hum. Mutat. 32, E2069-E2078.
|
[40] |
Jiang, J., Promchan, K., Jiang, H., Awasthi, P., Marshall, H., Harned, A.,Natarajan, V., 2016. Depletion of bbs protein lztfl1 affects growth and causes retinal degeneration in mice. J. Genet. Genomics 43, 381-391.
|
[41] |
Jin, H., White, S.R., Shida, T., Schulz, S., Aguiar, M., Gygi, S.P., Bazan, J.F.,Nachury, M.V., 2010. The conserved bardet-biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208-1219.
|
[42] |
Kang, H.S., Kim, Y.S., ZeRuth, G., Beak, J.Y., Gerrish, K., Kilic, G., Sosa-Pineda, B., Jensen, J., Pierreux, C.E., Lemaigre, F.P., et al., 2009. Transcription factor glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol. Cell Biol. 29, 6366-6379.
|
[43] |
Kang, S., 2021. Adipose tissue malfunction drives metabolic dysfunction in alstrom syndrome. Diabetes 70, 323-325.
|
[44] |
Khan, S., Lin, S., Harlalka, G.V., Ullah, A., Shah, K., Khalid, S., Mehmood, S., Hassan, M.J., Ahmad, W., Self, J.E., et al., 2019. Bbs5 and inpp5e mutations associated with ciliopathy disorders in families from Pakistan. Ann. Hum. Genet. 83, 477-482.
|
[45] |
Kopinke, D., Roberson, E.C.,Reiter, J.F., 2017. Ciliary hedgehog signaling restricts injury-induced adipogenesis. Cell 170, 340-351 e312.
|
[46] |
Korostishevsky, M., Cohen, Z., Malkin, I., Ermakov, S., Yarenchuk, O.,Livshits, G., 2010. Morphological and biochemical features of obesity are associated with mineralization genes' polymorphisms. Int. J. Obes. 34, 1308-1318.
|
[47] |
Lee, C.H., Song, D.K., Park, C.B., Choi, J., Kang, G.M., Shin, S.H., Kwon, I., Park, S., Kim, S., Kim, J.Y., et al., 2020. Primary cilia mediate early life programming of adiposity through lysosomal regulation in the developing mouse hypothalamus. Nat. Commun. 11, 5772.
|
[48] |
Leibowitz, S.F., Hammer, N.J.,Chang, K., 1981. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol. Behav. 27, 1031-1040.
|
[49] |
Li, M.M., Madara, J.C., Steger, J.S., Krashes, M.J., Balthasar, N., Campbell, J.N., Resch, J.M., Conley, N.J., Garfield, A.S.,Lowell, B.B., 2019. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. Neuron 102, 653-667 e656.
|
[50] |
Li, S., Wan, K.Y., Chen, W., Tao, H., Liang, X.,Pan, J., 2020. Functional exploration of heterotrimeric kinesin-ii in ift and ciliary length control in chlamydomonas. Elife 9.
|
[51] |
Li, Y.,Hu, J., 2011. Small gtpases and cilia. Protein Cell 2, 13-25.
|
[52] |
Liao, X., Zhou, H.,Deng, T., 2022. The composition, function, and regulation of adipose stem and progenitor cells. J. Genet. Genomics 49, 308-315.
|
[53] |
Liu, K., Jin, X., Zhang, X., Lian, H.,Ye, J., 2022. The mechanisms of nucleotide actions in insulin resistance. J. Genet. Genomics 49, 299-307.
|
[54] |
Liu, L., Zhang, M., Xia, Z., Xu, P., Chen, L.,Xu, T., 2011. Caenorhabditis elegans ciliary protein nphp-8, the homologue of human rpgrip1l, is required for ciliogenesis and chemosensation. Biochem. Biophys. Res. Commun. 410, 626-631.
|
[55] |
Loktev, A.V.,Jackson, P.K., 2013. Neuropeptide y family receptors traffic via the bardet-biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316-1329.
|
[56] |
Lonn, M., Mehlig, K., Bengtsson, C.,Lissner, L., 2010. Adipocyte size predicts incidence of type 2 diabetes in women. Faseb. J. 24, 326-331.
|
[57] |
Malicki, J.J.,Johnson, C.A., 2017. The cilium: cellular antenna and central processing unit. Trends Cell Biol. 27, 126-140.
|
[58] |
Marion, V., Mockel, A., De Melo, C., Obringer, C., Claussmann, A., Simon, A., Messaddeq, N., Durand, M., Dupuis, L., Loeffler, J.P., et al., 2012. Bbs-induced ciliary defect enhances adipogenesis, causing paradoxical higher-insulin sensitivity, glucose usage, and decreased inflammatory response. Cell Metabol. 16, 363-377.
|
[59] |
Marion, V., Stoetzel, C., Schlicht, D., Messaddeq, N., Koch, M., Flori, E., Danse, J.M., Mandel, J.L.,Dollfus, H., 2009. Transient ciliogenesis involving bardet-biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc. Natl. Acad. Sci. U.S.A. 106, 1820-1825.
|
[60] |
Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S.,Schwartz, M.W., 2006. Central nervous system control of food intake and body weight. Nature 443, 289-295.
|
[61] |
Morton, G.J., Meek, T.H.,Schwartz, M.W., 2014. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15, 367-378.
|
[62] |
Nishimura, Y., Kasahara, K., Shiromizu, T., Watanabe, M.,Inagaki, M., 2019. Primary cilia as signaling hubs in health and disease. Adv. Sci. 6, 1801138.
|
[63] |
Oh, D.Y., Talukdar, S., Bae, E.J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W.J., Watkins, S.M.,Olefsky, J.M., 2010. Gpr120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687-698.
|
[64] |
Oh, E.C., Vasanth, S.,Katsanis, N., 2015. Metabolic regulation and energy homeostasis through the primary cilium. Cell Metabol. 21, 21-31.
|
[65] |
Pala, R., Jamal, M., Alshammari, Q.,Nauli, S.M., 2018. The roles of primary cilia in cardiovascular diseases. Cells 7.
|
[66] |
Phua, S.C., Chiba, S., Suzuki, M., Su, E., Roberson, E.C., Pusapati, G.V., Schurmans, S., Setou, M., Rohatgi, R., Reiter, J.F., et al., 2017. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision. Cell 168, 264-279 e215.
|
[67] |
Pospisilik, J.A., Schramek, D., Schnidar, H., Cronin, S.J., Nehme, N.T., Zhang, X., Knauf, C., Cani, P.D., Aumayr, K., Todoric, J., et al., 2010. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140, 148-160.
|
[68] |
Rahmouni, K., Fath, M.A., Seo, S., Thedens, D.R., Berry, C.J., Weiss, R., Nishimura, D.Y.,Sheffield, V.C., 2008. Leptin resistance contributes to obesity and hypertension in mouse models of bardet-biedl syndrome. J. Clin. Invest. 118, 1458-1467.
|
[69] |
Ran, J., Liu, M., Feng, J., Li, H., Ma, H., Song, T., Cao, Y., Zhou, P., Wu, Y., Yang, Y., et al., 2020. Ask1-mediated phosphorylation blocks hdac6 ubiquitination and degradation to drive the disassembly of photoreceptor connecting cilia. Dev. Cell 53, 287-299 e285.
|
[70] |
Ran, J., Zhang, Y., Zhang, S., Li, H., Zhang, L., Li, Q., Qin, J., Li, D., Sun, L., Xie, S., et al., 2022. Targeting the hdac6-cilium axis ameliorates the pathological changes associated with retinopathy of prematurity. Adv. Sci., e2105365.
|
[71] |
Ran, J.,Zhou, J., 2020. Targeting the photoreceptor cilium for the treatment of retinal diseases. Acta Pharmacol. Sin. 41, 1410-1415.
|
[72] |
Reiter, J.F.,Leroux, M.R., 2017. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533-547.
|
[73] |
Ross, S.E., Hemati, N., Longo, K.A., Bennett, C.N., Lucas, P.C., Erickson, R.L.,MacDougald, O.A., 2000. Inhibition of adipogenesis by wnt signaling. Science 289, 950-953.
|
[74] |
Rouabhi, M., Guo, D.F., Morgan, D.A., Zhu, Z., Lopez, M., Zingman, L., Grobe, J.L.,Rahmouni, K., 2021. Bbsome ablation in sf1 neurons causes obesity without comorbidities. Mol. Metabol. 48, 101211.
|
[75] |
Schou, K.B., Pedersen, L.B.,Christensen, S.T., 2015. Ins and outs of gpcr signaling in primary cilia. EMBO Rep. 16, 1099-1113.
|
[76] |
Schwartz, M.W., Woods, S.C., Porte, D., Jr., Seeley, R.J.,Baskin, D.G., 2000. Central nervous system control of food intake. Nature 404, 661-671.
|
[77] |
Seo, S., Baye, L.M., Schulz, N.P., Beck, J.S., Zhang, Q., Slusarski, D.C.,Sheffield, V.C., 2010. Bbs6, bbs10, and bbs12 form a complex with cct/tric family chaperonins and mediate bbsome assembly. Proc. Natl. Acad. Sci. U.S.A. 107, 1488-1493.
|
[78] |
Seo, S., Guo, D.F., Bugge, K., Morgan, D.A., Rahmouni, K.,Sheffield, V.C., 2009. Requirement of bardet-biedl syndrome proteins for leptin receptor signaling. Hum. Mol. Genet. 18, 1323-1331.
|
[79] |
Siljee, J.E., Wang, Y., Bernard, A.A., Ersoy, B.A., Zhang, S., Marley, A., Von Zastrow, M., Reiter, J.F.,Vaisse, C., 2018. Subcellular localization of mc4r with adcy3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 50, 180-185.
|
[80] |
Simon, J.J., Stopyra, M.A., Monning, E., Sailer, S., Lavandier, N., Kihm, L.P., Bendszus, M., Preissl, H., Herzog, W.,Friederich, H.C., 2020. Neuroimaging of hypothalamic mechanisms related to glucose metabolism in anorexia nervosa and obesity. J. Clin. Invest. 130, 4094-4103.
|
[81] |
Sims, J.S.,Lorden, J.F., 1986. Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav. Brain Res. 22, 265-281.
|
[82] |
Song, T., Yang, Y., Zhou, P., Ran, J., Zhang, L., Wu, X., Xie, W., Zhong, T., Liu, H., Liu, M., et al., 2022. Enkd1 promotes cp110 removal through competing with cep97 to initiate ciliogenesis. EMBO Rep. 23, e54090.
|
[83] |
Spalding, K.L., Arner, E., Westermark, P.O., Bernard, S., Buchholz, B.A., Bergmann, O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., et al., 2008. Dynamics of fat cell turnover in humans. Nature 453, 783-787.
|
[84] |
Stratigopoulos, G., LeDuc, C.A., Cremona, M.L., Chung, W.K.,Leibel, R.L., 2011. Cut-like homeobox 1 (cux1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa gtpase regulator-interacting protein-1-like (rpgrip1l) genes and coordinates leptin receptor signaling. J. Biol. Chem. 286, 2155-2170.
|
[85] |
Stratigopoulos, G., Martin Carli, J.F., O'Day, D.R., Wang, L., Leduc, C.A., Lanzano, P., Chung, W.K., Rosenbaum, M., Egli, D., Doherty, D.A., et al., 2014. Hypomorphism for rpgrip1l, a ciliary gene vicinal to the fto locus, causes increased adiposity in mice. Cell Metabol. 19, 767-779.
|
[86] |
Suh, J.M., Gao, X., McKay, J., McKay, R., Salo, Z.,Graff, J.M., 2006. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metabol. 3, 25-34.
|
[87] |
Sun, J.S., Yang, D.J., Kinyua, A.W., Yoon, S.G., Seong, J.K., Kim, J., Moon, S.J., Shin, D.M., Choi, Y.H.,Kim, K.W., 2021. Ventromedial hypothalamic primary cilia control energy and skeletal homeostasis. J. Clin. Invest. 131.
|
[88] |
Tang, W., Zeve, D., Suh, J.M., Bosnakovski, D., Kyba, M., Hammer, R.E., Tallquist, M.D.,Graff, J.M., 2008. White fat progenitor cells reside in the adipose vasculature. Science 322, 583-586.
|
[89] |
Tartaglia, L.A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, G.J., Campfield, L.A., Clark, F.T., Deeds, J., et al., 1995. Identification and expression cloning of a leptin receptor, ob-r. Cell 83, 1263-1271.
|
[90] |
Teperino, R., Amann, S., Bayer, M., McGee, S.L., Loipetzberger, A., Connor, T., Jaeger, C., Kammerer, B., Winter, L., Wiche, G., et al., 2012. Hedgehog partial agonism drives warburg-like metabolism in muscle and brown fat. Cell 151, 414-426.
|
[91] |
Vaisse, C., Reiter, J.F.,Berbari, N.F., 2017. Cilia and obesity. Cold Spring Harbor Perspect. Biol. 9.
|
[92] |
Volta, F.,Gerdes, J.M., 2017. The role of primary cilia in obesity and diabetes. Ann. N. Y. Acad. Sci. 1391, 71-84.
|
[93] |
Woollard, J.R., Punyashtiti, R., Richardson, S., Masyuk, T.V., Whelan, S., Huang, B.Q., Lager, D.J., vanDeursen, J., Torres, V.E., Gattone, V.H., et al., 2007. A mouse model of autosomal recessive polycystic kidney disease with biliary duct and proximal tubule dilatation. Kidney Int. 72, 328-336.
|
[94] |
Wright, W.S., Longo, K.A., Dolinsky, V.W., Gerin, I., Kang, S., Bennett, C.N., Chiang, S.H., Prestwich, T.C., Gress, C., Burant, C.F., et al., 2007. Wnt10b inhibits obesity in ob/ob and agouti mice. Diabetes 56, 295-303.
|
[95] |
Yamakawa, D., Katoh, D., Kasahara, K., Shiromizu, T., Matsuyama, M., Matsuda, C., Maeno, Y., Watanabe, M., Nishimura, Y., Inagaki, M., 2021. Primary cilia-dependent lipid raft/caveolin dynamics regulate adipogenesis. Cell Rep. 34, 108817.
|
[96] |
Yang, D., Wu, X., Wang, W., Zhou, Y.,Wang, Z., 2022. Ciliary type iii adenylyl cyclase in the vmh is crucial for high-fat diet-induced obesity mediated by autophagy. Adv. Sci. 9, e2102568.
|
[97] |
Yang, D.J., Hong, J.,Kim, K.W., 2021. Hypothalamic primary cilium: a hub for metabolic homeostasis. Exp. Mol. Med. 53, 1109-1115.
|
[98] |
Yang, Y., Ran, J., Liu, M., Li, D., Li, Y., Shi, X., Meng, D., Pan, J., Ou, G., Aneja, R., et al., 2014. Cyld mediates ciliogenesis in multiple organs by deubiquitinating cep70 and inactivating hdac6. Cell Res. 24, 1342-1353.
|
[99] |
Yildiz Bolukbasi, E., Mumtaz, S., Afzal, M., Woehlbier, U., Malik, S.,Tolun, A., 2018. Homozygous mutation in cep19, a gene mutated in morbid obesity, in bardet-biedl syndrome with predominant postaxial polydactyly. J. Med. Genet. 55, 189-197.
|
[100] |
Yu, F., Guo, S., Li, T., Ran, J., Zhao, W., Li, D., Liu, M., Yan, X., Yang, X., Zhu, X., et al., 2019. Ciliary defects caused by dysregulation of o-glcnac modification are associated with diabetic complications. Cell Res. 29, 171-173.
|
[101] |
Yu, F., Li, T., Sui, Y., Chen, Q., Yang, S., Yang, J., Hong, R., Li, D., Yan, X., Zhao, W., et al., 2020. O-glcnac transferase regulates centriole behavior and intraflagellar transport to promote ciliogenesis. Protein Cell 11, 852-857.
|
[102] |
Yu, F., Ran, J.,Zhou, J., 2016. Ciliopathies: does hdac6 represent a new therapeutic target? Trends Pharmacol. Sci. 37, 114-119.
|
[103] |
Zhang, M.,Assouline, J.G., 2007. Cilia containing 9 + 2 structures grown from immortalized cells. Cell Res. 17, 537-545.
|
[104] |
Zhang, Q., Davenport, J.R., Croyle, M.J., Haycraft, C.J.,Yoder, B.K., 2005. Disruption of ift results in both exocrine and endocrine abnormalities in the pancreas of tg737(orpk) mutant mice. Lab. Invest. 85, 45-64.
|
[105] |
Zhang, Y., Hao, J., Tarrago, M.G., Warner, G.M., Giorgadze, N., Wei, Q., Huang, Y., He, K., Chen, C., Peclat, T.R., et al., 2021. Fbf1 deficiency promotes beiging and healthy expansion of white adipose tissue. Cell Rep. 36, 109481.
|
[106] |
Zheng, J., Liu, H., Zhu, L., Chen, Y., Zhao, H., Zhang, W., Li, F., Xie, L., Yan, X.,Zhu, X., 2019. Microtubule-bundling protein spef1 enables mammalian ciliary central apparatus formation. J. Mol. Cell Biol. 11, 67-77.
|
[107] |
Zhu, B., Zhu, X., Wang, L., Liang, Y., Feng, Q.,Pan, J., 2017. Functional exploration of the ift-a complex in intraflagellar transport and ciliogenesis. PLoS Genet. 13, e1006627.
|
[108] |
Zhu, D., Shi, S., Wang, H.,Liao, K., 2009. Growth arrest induces primary-cilium formation and sensitizes igf-1-receptor signaling during differentiation induction of 3t3-l1 preadipocytes. J. Cell Sci. 122, 2760-2768.
|
[109] |
Zhu, L., Yang, X., Li, J., Jia, X., Bai, X., Zhao, Y., Cheng, W., Shu, M., Zhu, Y.,Jin, S., 2021a. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the crispr/cas9 system. J. Genet. Genomics 48, 134-146.
|
[110] |
Zhu, X., Wang, J., Li, S., Lechtreck, K.,Pan, J., 2021b. Ift54 directly interacts with kinesin-ii and ift dynein to regulate anterograde intraflagellar transport. EMBO J. 40, e105781.
|