[1] |
Bhlmann, P., van de Geer, S., 2011. Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer.
|
[2] |
Breiman, L.J.M.l., 2001. Random forests. Machine Learning, 45, 5-32.
|
[3] |
Brennecke, P., Anders, S., Kim, J.K., Kolodziejczyk, A.A., Zhang, X., Proserpio, V., Baying, B., Benes, V., Teichmann, S.A., Marioni, J.C., Heisler, M.G., 2013. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095.
|
[4] |
Cheng, L.H., Hsu, T.C., Lin, C., 2021. Integrating ensemble systems biology feature selection and bimodal deep neural network for breast cancer prognosis prediction. Scientific reports 11, 14914.
|
[5] |
Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samarajiwa, S., Yuan, Y., et al., 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346-352.
|
[6] |
Diaz-Uriarte, R., de Andres, S.A., 2006. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3.
|
[7] |
Elgin Christo, V.R., Khanna Nehemiah, H., Minu, B., Kannan, A., 2019. Correlation-based ensemble feature selection using bioinspired algorithms and classification using backpropagation neural network. Comput. Math. Methods Med. 2019, 7398307.
|
[8] |
Friedman, J.H., Hastie, T., Tibshirani, R., 2010. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 33, 1-22.
|
[9] |
Goldman, M.J., Craft, B., Hastie, M., Repecka, K., McDade, F., Kamath, A., Banerjee, A., Luo, Y., Rogers, D., Brooks, A.N., Zhu, J., Haussler, D., 2020. Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnology 38, 675-678.
|
[10] |
Guo, C., Gao, Y.Y., Ju, Q.Q., Zhang, C.X., Gong, M., Li, Z.L., 2021. The landscape of gene co-expression modules correlating with prognostic genetic abnormalities in AML. J. Transl. Med. 19, 228.
|
[11] |
Hamidi, O., Tapak, L., Jafarzadeh Kohneloo, A., Sadeghifar, M., 2014. High-dimensional additive hazards regression for oral squamous cell carcinoma using microarray data: a comparative study. BioMed research international 2014, 393280.
|
[12] |
Hamraz, M., Gul, N., Raza, M., Khan, D.M., Khalil, U., Zubair, S., Khan, Z., 2021. Robust proportional overlapping analysis for feature selection in binary classification within functional genomic experiments. PeerJ. Computer science 7, e562.
|
[13] |
Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B., 1998. Support vector machines. IEEE Intelligent Systems and their Applications 13, 18-28.
|
[14] |
Huang, J., Ma, S., Zhang, C.-H., 2008. Adaptive Lasso for sparse high-dimensional regression models. Statistica Sinica 18,1603-1618.
|
[15] |
Ishwaran, H., Malley, J.D., 2014. Synthetic learning machines. Biodata Min. 7, 28.
|
[16] |
Jianqing, F., Rui, S., 2010. Sure independence screening in generalized linear models with NP-dimensionality. Ann. Statist. 38, 3567-3604.
|
[17] |
Ju, H.Q., Zhao, Q., Wang, F., Lan, P., Wang, Z., Zuo, Z.X., Wu, Q.N., Fan, X.J., Mo, H.Y., Chen, L., et al., 2019. A circRNA signature predicts postoperative recurrence in stage II/III colon cancer. EMBO Mol. Med. 11, e10168.
|
[18] |
Konietschke, F., Schwab, K., Pauly, M., 2021. Small sample sizes: A big data problem in high-dimensional data analysis. Stat. Methods Med. Res. 30, 687-701.
|
[19] |
Liao, J.G., Chin, K.V., 2007. Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics 23, 1945-1951.
|
[20] |
Lin, E., Lin, C.H., Lane, H.Y., 2021. Prediction of functional outcomes of schizophrenia with genetic biomarkers using a bagging ensemble machine learning method with feature selection. Scientific reports 11, 10179.
|
[21] |
Loh, W.Y., 2011. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1, 14-23.
|
[22] |
Lu, J.H., Zuo, Z.X., Wang, W., Zhao, Q., Qiu, M.Z., Luo, H.Y., Chen, Z.H., Mo, H.Y., Wang, F., Yang, D.D., et al., 2018. A two-microRNA-based signature predicts first-line chemotherapy outcomes in advanced colorectal cancer patients. Cell death discovery 4, 116.
|
[23] |
Luo, H., Zhao, Q., Wei, W., Zheng, L., Yi, S., Li, G., Wang, W., Sheng, H., Pu, H., Mo, H., et al., 2020. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci. Transl. Med. 12, eaax7533.
|
[24] |
Meinshausen, N., Yu, B.J.T.a.o.s., 2009. Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist. 37, 246-270.
|
[25] |
Park, H., Imoto, S., Miyano, S., 2015. Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets. PLoS ONE 10, e0141869.
|
[26] |
Pokarowski, P., Mielniczuk, J., 2015. Combined l1 and greedy l0 penalized least squares for linear model selection. J. Mach. Learn. Res. 16, 961-992.
|
[27] |
Qu, C., Zhang, L., Li, J., Deng, F., Tang, Y., Zeng, X., Peng, X., 2021. Improving feature selection performance for classification of gene expression data using Harris Hawks optimizer with variable neighborhood learning. Brief. Bioinform. 22, bbab097.
|
[28] |
Quezada, H., Guzman-Ortiz, A.L., Diaz-Sanchez, H., Valle-Rios, R., Aguirre-Hernandez, J., 2017. Omics-based biomarkers: current status and potential use in the clinic. Bol. Med. Hosp. Infant Mex. 74, 219-226.
|
[29] |
Royston, P., Altman, D.G., 2013. External validation of a Cox prognostic model: principles and methods. BMC Med. Res. Methodol. 13, 33.
|
[30] |
Salem, O.A.M., Liu, F., Chen, Y.P., Chen, X., 2020. Ensemble Fuzzy Feature Selection Based on Relevancy, Redundancy, and Dependency Criteria. Entropy. 22, 757.
|
[31] |
Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B., 2011. Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior, 2011. 31st International Conference on Distributed Computing Systems Workshops. pp. 166-171.
|
[32] |
Su, W., Bogdan, M., Candes, E., 2017. False discoveries occur early on the lasso path. Ann. Statist. 45, 2133-2150.
|
[33] |
Tibshirani, R., 2011. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B, 73, 273-282.
|
[34] |
Tibshirani, R.J.J.o.t.R.S.S.S.B., 1996. Regression shrinkage and selection via the lasso. 58, 267-288.
|
[35] |
Wang, S., Nan, B., Rosset, S., Zhu, J., 2011. Random Lasso. Ann. Appl. Stat. 5, 468-485.
|
[36] |
White, K.R., Stefanski, L.A., Wu, Y., 2017. Variable Selection in Kernel Regression Using Measurement Error Selection Likelihoods. J. Am. Stat. Assoc. 112, 1587-1597.
|
[37] |
Xiao, Y., Wu, J., Lin, Z., Zhao, X., 2018. A deep learning-based multi-model ensemble method for cancer prediction. Comput. Methods Programs Biomed. 153, 1-9.
|
[38] |
Xu, J., Qu, K., Yuan, M., Yang, J., 2021. Feature Selection Combining Information Theory View and Algebraic View in the Neighborhood Decision System. Entropy (Basel, Switzerland) 23, 704.
|
[39] |
Xu, R.H., Wei, W., Krawczyk, M., Wang, W., Luo, H., Flagg, K., Yi, S., Shi, W., Quan, Q., Li, K., et al., 2017. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. mater. 16, 1155-1161.
|
[40] |
Yamada, M., Jitkrittum, W., Sigal, L., Xing, E.P., Sugiyama, M.J.N.c., 2014. High-dimensional feature selection by feature-wise kernelized lasso. Neural. Comput. 26, 185-207.
|
[41] |
Zhang, Z., Chen, L., Xu, P., Xing, L., Hong, Y., Chen, P., 2020. Gene correlation network analysis to identify regulatory factors in sepsis. J. Transl. Med. 18, 381.
|
[42] |
Zhao, Q., Sun, Y., Liu, Z., Zhang, H., Li, X., Zhu, K., Liu, Z.X., Ren, J., Zuo, Z., 2020. CrossICC: iterative consensus clustering of cross-platform gene expression data without adjusting batch effect. Brief Bioinform. 21, 1818-1824.
|
[43] |
Zhu, J., Wen, C., Zhu, J., Zhang, H., Wang, X., 2020. A polynomial algorithm for best-subset selection problem. Proc. Natl. Acad. Sci. U. S. A. 117, 33117-33123.
|
[44] |
Zhu, L., Li, L., Li, R., Zhu, L., 2011. Model-Free Feature Screening for Ultrahigh Dimensional Data. J. Am. Stat. Assoc. 106, 1464-1475.
|
[45] |
Zou, H.J.J.o.t.A.s.a., 2006. The adaptive lasso and its oracle properties. 101, 1418-1429.
|