[1] |
Agarwal, A., Baskaran, S., Parekh, N., Cho, C.L., Henkel, R., Vij, S., Arafa, M., Panner Selvam, M.K., Shah, R., 2021. Male infertility. Lancet 397(10271), 319-333.
|
[2] |
Bailey, A.S., Batista, P.J., Gold, R.S., Chen, Y.G., de Rooij, D.G., Chang, H.Y., Fuller, M.T., 2017. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. Elife 6, e26116.
|
[3] |
Chi, M.N., Auriol, J., Jegou, B., Kontoyiannis, D.L., Turner, J.M., de Rooij, D.G., Morello, D., 2011. The RNA-binding protein ELAVL1/HuR is essential for mouse spermatogenesis, acting both at meiotic and postmeiotic stages. Mol. Biol. Cell 22(16), 2875-2885.
|
[4] |
Chukrallah, L.G., Badrinath, A., Vittor, G.G., Snyder, E.M., 2022. ADAD2 regulates heterochromatin in meiotic and post-meiotic male germ cells via translation of MDC1. J. Cell Sci. 135(4).
|
[5] |
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121), 819-823.
|
[6] |
Hsu, P.J., Zhu, Y., Ma, H., Guo, Y., Shi, X., Liu, Y., Qi, M., Lu, Z., Shi, H., Wang, J., Cheng, Y., Luo, G., Dai, Q., Liu, M., Guo, X., Sha, J., Shen, B., He, C., 2017. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27(9), 1115-1127.
|
[7] |
Krausz, C., Riera-Escamilla, A., Moreno-Mendoza, D., Holleman, K., Cioppi, F., Algaba, F., Pybus, M., Friedrich, C., Wyrwoll, M.J., Casamonti, E., Pietroforte, S., Nagirnaja, L., Lopes, A.M., Kliesch, S., Pilatz, A., Carrell, D.T., Conrad, D.F., Ars, E., Ruiz-Castane, E., Aston, K.I., Baarends, W.M., Tuttelmann, F., 2020. Genetic dissection of spermatogenic arrest through exome analysis: clinical implications for the management of azoospermic men. Genet. Med. 22(12), 1956-1966.
|
[8] |
Liu, Q., Guo, Q., Guo, W., Song, S., Wang, N., Chen, X., Sun, A., Yan, L., Qiao, J., 2021. Loss of CEP70 function affects acrosome biogenesis and flagella formation during spermiogenesis. Cell Death Dis. 12(5), 478.
|
[9] |
Liu, C., Tu, C., Wang, L., Wu, H., Houston, B.J., Mastrorosa, F.K., Zhang, W., Shen, Y., Wang, J., Tian, S., Meng, L., Cong, J., Yang, S., Jiang, Y., Tang, S., Zeng, Y., Lv, M., Lin, G., Li, J., Saiyin, H., He, X., Jin, L., Toure, A., Ray, P.F., Veltman, J.A., Shi, Q., O'Bryan, M.K., Cao, Y., Tan, Y.Q., Zhang, F., 2021. Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. Am. J. Hum. Genet. 108(2), 309-323.
|
[10] |
Morgan, M., Kumar, L., Li, Y., Baptissart, M., 2021. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell. Mol. Life Sci. 78(24), 8049-8071.
|
[11] |
Paronetto, M.P., Messina, V., Bianchi, E., Barchi, M., Vogel, G., Moretti, C., Palombi, F., Stefanini, M., Geremia, R., Richard, S., Sette, C., 2009. Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J. Cell Biol. 185(2), 235-249.
|
[12] |
Snyder, E., Chukrallah, L., Seltzer, K., Goodwin, L., Braun, R.E., 2020. ADAD1 and ADAD2, testis-specific adenosine deaminase domain-containing proteins, are required for male fertility. Sci. Rep. 10(1), 11536.
|
[13] |
Tournaye, H., Krausz, C., Oates, R.D., 2017. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol 5(7), 544-553.
|
[14] |
Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., Jaenisch, R., 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4), 910-918.
|
[15] |
Zheng, M., Chen, X., Cui, Y., Li, W., Dai, H., Yue, Q., Zhang, H., Zheng, Y., Guo, X., Zhu, H., 2021. TULP2, a New RNA-Binding Protein, Is Required for Mouse Spermatid Differentiation and Male Fertility. Front Cell Dev Biol 9, 623738.
|