5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 4
Apr.  2023
Turn off MathJax
Article Contents

Exome-wide variation in a diverse barley panel reveals genetic associations with ten agronomic traits in Eastern landraces

doi: 10.1016/j.jgg.2022.12.001
Funds:

We especially thank Ms. Naomi Yamaji (Okayama University, Japan) for her excellent technical assistance. Barley seeds used in this study were supplied by the National BioResource Project (NBRP) Barley, Japan (https://nbrp.jp/en/resource/barley-en/). This work was supported by a Grant-in-Aid for Scientific Research (B) (grant no. 15KT0038 to K.M.) and a Grant-in-Aid for Scientific Research (C) (grant no. 19K11861 to K.M. and R.N.) of the Japan Society for the Promotion of Science, and by CREST (grant no. JPMJCR16O4 to K.M.) of the Japan Science and Technology Agency.

  • Received Date: 2022-11-15
  • Accepted Date: 2022-12-09
  • Rev Recd Date: 2022-12-08
  • Publish Date: 2023-04-30
  • Barley (Hordeum vulgare ssp. vulgare) is one of the first crops to be domesticated and is adapted to a wide range of environments. Worldwide barley germplasm collections possess valuable allelic variations that could further improve barley productivity. Although barley genomics has offered a global picture of allelic variation among varieties and its association with various agronomic traits, polymorphisms from East Asian varieties remain scarce. In this study, we analyze exome polymorphisms in a panel of 274 barley varieties collected worldwide, including 137 varieties from East Asian countries and Ethiopia. We reveal the underlying population structure and conduct genome-wide association studies for 10 agronomic traits. Moreover, we examin genome-wide associations for traits related to grain size such as awn length and glume length. Our results demonstrate the value of diverse barley germplasm panels containing Eastern varieties, highlighting their distinct genomic signatures relative to Western subpopulations.
  • loading
  • [1]
    Araus, J.L., Cairns, J.E., 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52-61.
    [2]
    Asefa, M., Cao, M., He, Y., Mekonnen, E., Song, X., Yang, J., 2020. Ethiopian vegetation types, climate and topography. Plant Divers. 42, 302-311.
    [3]
    Bad,r A., Muller, K, Schafer-Pregl, R., El Rabey, H., Effgen, S., Ibrahim, H.H., Pozzi, C., Rohde, W., Salamini, F., 2000. On the origin and domestication history of Barley (Hordeum vulgare). Mol. Biol. Evol. 17, 499-510.
    [4]
    Bi, X., van Esse, W., Mulki, M.A., Kirschner, G., Zhong, J., Simon, R., von Korff, M., 2019. CENTRORADIALIS Interacts with FLOWERING LOCUS T-Like Genes to Control Floret Development and Grain Number. Plant Physiol. 180, 1013-1030.
    [5]
    Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
    [6]
    Bort, J., Febrero, A., Amaro, T., Araus, J.L., 1994. Role of awns in ear water-use efficiency and grain weight in barley. Agronomie 14, 133-139.
    [7]
    Bush, W.S., Moore, J.H., 2012. Chapter 11: Genome-Wide Association Studies. PLOS Comput. Biol. 8, e1002822.
    [8]
    Bustos-Korts, D., Dawson, I.K., Russell, J., Tondelli, A., Guerra, D., Ferrandi, C., Strozzi, F., Nicolazzi, E.L., Molnar-Lang, M., Ozkan, H., et al., 2019. Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley. Plant J. 99, 1172-1191.
    [9]
    Canci, P.C., Nduulu, L.M., Dill-Macky, R., Muehlbauer, G.J., Rasmusson, D.C., Smith, K.P., 2003. Genetic Relationship between Kernel Discoloration and Grain Protein Concentration in Barley. Crop Sci. 43, 1671-1679.
    [10]
    Chen, K., Lyskowski, A., Jaremko, L., Jaremko, M., 2021. Genetic and Molecular Factors Determining Grain Weight in Rice. Front. Plant Sci. 12, 605799.
    [11]
    Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92.
    [12]
    Dai, F., Chen, Z-H., Wang, X., Li, Z., Jin, G., Wu, D., Cai, S., Wang, N., Wu, F., Nevo, E., et al., 2014. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proc. Natl. Acad. Sci. U. S. A. 111, 13403-13408.
    [13]
    Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M., et al., 2021. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008.
    [14]
    Fernandez-Calleja, M., Casas, A.M., Igartua, E., 2021. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. Theor. Appl. Genet. 134, 1867-1897.
    [15]
    Franckowiak, J.D., 1997. Short rachilla hair 1. Barley Genet. Newsl. 26, 269.
    [16]
    Franckowiak, J.D., Konishi, T., 1997. Hairy leaf sheath. Barley Genet. Newsl. 26, 202.
    [17]
    Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H., Zhang, D., 2010. The SEPALLATA-Like Gene OsMADS34 Is Required for Rice Inflorescence and Spikelet Development. Plant Physiol. 153, 728-740.
    [18]
    Garcia-Gimenez, G., Jobling, S.A., 2022. Gene editing for barley grain quality improvement. J. Cereal Sci. 103, 103394.
    [19]
    Gorafi, Y.S.A., Kim, J-S., Elbashir, A.A.E., Tsujimoto, H., 2018. A population of wheat multiple synthetic derivatives: an effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement. Theor. Appl. Genet. 131, 1615-1626.
    [20]
    Guo, X., Sarup, P., Jensen, J.D., Orabi, J., Kristensen, N.H., Mulder, F.A.A., Jahoor, A., Jensen, J., 2020. Genetic Variance of Metabolomic Features and Their Relationship With Malting Quality Traits in Spring Barley. Front. Plant Sci. 11, 575467.
    [21]
    Haas, M., Schreiber, M., Mascher, M., 2019. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 61, 204-225.
    [22]
    He, F., Pasam, R., Shi, F., Kant, S., Keeble-Gagnere, G., Kay, P., Forrest, K., Fritz, A., Hucl, P., Wiebe, K., et al., 2019. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896-904.
    [23]
    Hirayama, T., Saisho, D., Matsuura, T., Okada, S., Takahagi, K., Kanatani, A., Ito, J., Tsuji, H., Ikeda, Y., Mochida, K., 2020. Life-Course Monitoring of Endogenous Phytohormone Levels under Field Conditions Reveals Diversity of Physiological States among Barley Accessions. Plant Cell Physiol. 61, 1438-1448.
    [24]
    Hisano, H., Abe, F., Hoffie, R.E., Kumlehn, J., 2021. Targeted genome modifications in cereal crops. Breed. Sci. 71, 405-416.
    [25]
    Huang, B., Huang, D., Hong, Z., Owie, S.O., Wu, W., 2020. Genetic analysis reveals four interacting loci underlying awn trait diversity in barley (Hordeum vulgare). Sci. Rep. 10, 12535.
    [26]
    Huang, B., Wu, W., Hong, Z., 2021. Genetic Interactions of Awnness Genes in Barley. Genes 12, 606.
    [27]
    Huang, M., Liu, X., Zhou, Y., Summers, R.M., Zhang, Z., 2019. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 8, giy154.
    [28]
    Jayakodi, M., Padmarasu, S., Haberer, G., Bonthala, V.S., Gundlach, H., Monat, C., Lux, T., Kamal, N., Lang, D., Himmelbach, A., et al., 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284-289.
    [29]
    Jia, Y., Westcott, S., He, T., McFawn, L.A., Angessa, T., Hill, C., Tan, C., Zhang, X., Zhou, G., Li, C., 2021. Genome-wide association studies reveal QTL hotspots for grain brightness and black point traits in barley. Crop J. 9, 154-167.
    [30]
    Karunarathne, S.D., Han, Y., Zhang, X-Q., Li, C., 2022. CRISPR/Cas9 gene editing and natural variation analysis demonstrate the potential for HvARE1 in improvement of nitrogen use efficiency in barley. J. Integr. Plant Biol. 64, 756-770.
    [31]
    Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., et al., 2007. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. U. S. A. 104, 1424-1429.
    [32]
    Kumar, A., Kumar, S., Singh, K.B.M., Prasad, M., Thakur, J.K., 2020. Designing a Mini-Core Collection Effectively Representing 3004 Diverse Rice Accessions. Plant Commun. 1, 100049.
    [33]
    Kurata, N., Satoh, H., Kitano, H., Nagato, Y., Endo, T., Sato, K., Akashi, R., Ezura, H., Kusaba, M., Kobayashi, M., et al., 2010. NBRP, National Bioresource Project of Japan and plant bioresource management. Breed. Sci. 60, 461-468.
    [34]
    Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    [35]
    Liang, Z., Qiu, Y., Schnable, J.C., 2020. Genome-Phenome Wide Association in Maize and Arabidopsis Identifies a Common Molecular and Evolutionary Signature. Mol. Plant 13, 907-922.
    [36]
    Lister, D.L., Jones, H., Oliveira, H.R., Petrie, C.A., Liu, X., Cockram, J., Kneale, C.J., Kovaleva, O., Jones, M.K., 2018. Barley heads east: Genetic analyses reveal routes of spread through diverse Eurasian landscapes. PLoS ONE 13, e0196652.
    [37]
    Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 12, e1005767.
    [38]
    Lu, X., Kracher, B., Saur, I.M.L., Bauer, S., Ellwood, S.R., Wise, R., Yaeno, T., Maekawa, T., Schulze-Lefert, P., 2016. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc. Natl. Acad. Sci. U. S. A. 113, E6486-E6495.
    [39]
    Lu, Y., Liu, Y., Niu, X., Yang, Q., Hu, X., Zhang, H-Y., Xia, J., 2015. Systems Genetic Validation of the SNP-Metabolite Association in Rice Via Metabolite-Pathway-Based Phenome-Wide Association Scans. Front. Plant Sci. 6, 1027.
    [40]
    Ma, Y., Liu, M., Stiller, J., Liu, C., 2019. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics 20, 12.
    [41]
    Mayer, K.F.X., Waugh, R., Langridge, P., Close, T.J., Wise, R.P., Graner, A., Matsumoto, T., Sato, K., Schulman, A., Muehlbauer, G.J., et al., 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711-716.
    [42]
    McCouch, S.R., Wright, M.H., Tung, C-W., Maron, L.G., McNally, K.L., Fitzgerald, M., Singh, N., DeClerck, G., Agosto-Perez, F., Korniliev, P., et al., 2016. Open access resources for genome-wide association mapping in rice. Nat. Commun. 7, 10532.
    [43]
    Milner, S.G., Jost, M., Taketa, S., Mazon, E.R., Himmelbach, A., Oppermann, M., Weise, S., Knupffer, H., Basterrechea, M., Konig, P., et al., 2019. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319-326.
    [44]
    Mochida, K., Nishii, R., Hirayama, T., 2020. Decoding Plant-Environment Interactions That Influence Crop Agronomic Traits. Plant Cell Physiol. 61, 1408-1418.
    [45]
    Morey, S.R., Hirose, T., Hashida, Y., Miyao, A., Hirochika, H., Ohsugi, R., Yamagishi, J., Aoki, N., 2019. Characterisation of a rice vacuolar invertase isoform, OsINV2, for growth and yield-related traits. Funct. Plant Biol. 46, 777-785.
    [46]
    Morris, G.P., Ramu, P., Deshpande, S.P., Hash, C.T., Shah, T., Upadhyaya, H.D., Riera-Lizarazu, O., Brown, P.J., Acharya, C.B., Mitchell, S.E., et al., 2013. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. U. S. A. 110, 453-458.
    [47]
    Niu, J., Zheng, S., Shi, X., Si, Y., Tian, S., He, Y., Ling, H-Q., 2020. Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.). Crop J. 8, 613-622.
    [48]
    Nordborg M, Weigel D, 2008. Next-generation genetics in plants. Nature 456: 720-723.
    [49]
    Qiu, L-J., Xing, L-L., Guo, Y., Wang, J., Jackson, S.A., Chang, R-Z., 2013. A platform for soybean molecular breeding: the utilization of core collections for food security. Plant Mol. Biol. 83, 41-50.
    [50]
    Raj, A., Stephens, M., Pritchard, J.K., 2014. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 197, 573-589.
    [51]
    Rebetzke, G.J., Bonnett, D.G., Reynolds, M.P., 2016. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. J. Exp. Bot. 67, 2573-2586.
    [52]
    Romero, C.C.T., Vels, A., Niks, R.E., 2018. Identification of a large-effect QTL associated with kernel discoloration in barley. J. Cereal Sci. 84, 62-70.
    [53]
    Roohanitaziani, R., de Maagd, R.A., Lammers, M., Molthoff, J., Meijer-Dekens, F., van Kaauwen, M.P.W., Finkers, R., Tikunov, Y., Visser, R.G.F., Bovy, A.G., 2020. Exploration of a Resequenced Tomato Core Collection for Phenotypic and Genotypic Variation in Plant Growth and Fruit Quality Traits. Genes 11, 1278.
    [54]
    Russell, J., Mascher, M., Dawson, I.K., Kyriakidis, S., Calixto, C., Freund, F., Bayer, M., Milne, I., Marshall-Griffiths, T., Heinen, S., et al., 2016. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat. Genet. 48, 1024-1030.
    [55]
    Saade, S., Kutlu, B., Draba, V., Forster, K., Schumann, E., Tester, M., Pillen, K., Maurer, A., 2017. A donor-specific QTL, exhibiting allelic variation for leaf sheath hairiness in a nested association mapping population, is located on barley chromosome 4H. PLoS One 12, e0189446.
    [56]
    Sato K, 2020. History and future perspectives of barley genomics. DNA Res. 27: dsaa023.
    [57]
    Sato, K., Ishii, M., Takahagi, K., Inoue, K., Shimizu, M., Uehara-Yamaguchi, Y., Nishii, R., Mochida, K., 2020. Genetic Factors Associated with Heading Responses Revealed by Field Evaluation of 274 Barley Accessions for 20 Seasons. iScience 23, 101146.
    [58]
    Shin, J-H., Blay, S., McNeney, B., Graham, J., 2006. LDheatmap: An R Function for Graphical Display of Pairwise Linkage Disequilibria Between Single Nucleotide Polymorphisms. J. Stat. Softw. 16, 1-9.
    [59]
    Surana, P., Xu, R., Fuerst, G., Chapman, A.V.E., Nettleton, D., Wise, R.P., 2017. Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen. G3 7, 3317-3329.
    [60]
    Swarts, K., Li, H., Romero Navarro, J.A., An, D., Romay, M.C., Hearne, S., Acharya, C., Glaubitz, J.C., Mitchell, S., Elshire, R.J., et al., 2014. Novel Methods to Optimize Genotypic Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants. Plant Genome 7, plantgenome2014.05.0023.
    [61]
    Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.
    [62]
    Takahagi, K., Uehara-Yamaguchi, Y., Yoshida, T., Sakurai, T., Shinozaki, K., Mochida, K., Saisho, D., 2016. Analysis of single nucleotide polymorphisms based on RNA sequencing data of diverse bio-geographical accessions in barley. Sci. Rep. 6, 33199.
    [63]
    Taketa, S., Amano, S., Tsujino, Y., Sato, T., Saisho, D., Kakeda, K., Nomura, M., Suzuki, T., Matsumoto, T., Sato, K., et al., 2008. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. U. S. A. 105, 4062-4067.
    [64]
    Taketa, S., you, T., Sakurai, Y., Miyake, S., Ichii, M., 2011. Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on barley chromosome 7H. Breed. Sci. 61, 80-85.
    [65]
    Tam, V., Patel, N., Turcotte, M., Bosse, Y., Pare, G., Meyre, D., 2019. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467-484.
    [66]
    Thudi, M., Palakurthi, R., Schnable, J.C., Chitikineni, A., Dreisigacker, S., Mace, E., Srivastava, R.K., Satyavathi, C.T., Odeny, D., Tiwari, V.K., et al., 2021. Genomic resources in plant breeding for sustainable agriculture. J. Plant Physiol. 257, 153351.
    [67]
    Turner, S.D., 2018. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. J. Open Source Softw. 3, 731.
    [68]
    Uffelmann, E., Huang, Q.Q., Munung, N.S., de Vries, J., Okada, Y., Martin, A.R., Martin, H.C., Lappalainen, T., Posthuma, D., 2021. Genome-wide association studies. Nat. Rev. Methods Primer 1, 59.
    [69]
    Wang, J., Zhang, Z., 2021. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genome. Proteom. Biorinfom. 19, 629-640.
    [70]
    Yang, Y., Saand, M.A., Huang, L., Abdelaal, W.B., Zhang, J., Wu, Y., Li, J., Sirohi, M.H., Wang, F., 2021. Applications of Multi-Omics Technologies for Crop Improvement. Front. Plant Sci. 12, 563953.
    [71]
    Yuo, T., Yamashita, Y., Kanamori, H., Matsumoto, T., Lundqvist, U., Sato, K., Ichii, M., Jobling, S.A., Taketa, S., 2012. A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J. Exp. Bot. 63, 5223-5232.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (276) PDF downloads (58) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return