5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 12
Dec.  2022
Turn off MathJax
Article Contents

Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification

doi: 10.1016/j.jgg.2022.11.006
Funds:

31830113).

The authors are grateful to Xiangfeng Shen (for maintaining the fish facility) and Jian Hong (for TEM analysis) for their technical support with animal studies. We specifically thank Professor Bo Zhang for sharing the prox1a gene-specific gRNA information. S.M.S and N.X. are supported by Centre for Computational Science and Engineering (CCSE) at Southern University of Science and Technology. This work is supported by the National Key R&D Program of China (2018YFA0800502), and the National Natural Science Foundation of China (31900579

  • Received Date: 2022-11-08
  • Accepted Date: 2022-11-21
  • Rev Recd Date: 2022-11-20
  • Publish Date: 2022-11-29
  • In mammals, the expression of the homeobox family member Cdx2/CDX2 is restricted within the intestine. Conditional ablation of the mouse Cdx2 in the endodermal cells causes a homeotic transformation of the intestine towards the esophagus or gastric fate. In this report, we show that null mutants of zebrafish cdx1b, encoding the counterpart of mammalian CDX2, could survive more than 10 days post fertilization, a stage when the zebrafish digestive system has been well developed. Through RNA sequencing (RNA-seq) and single-cell sequencing (scRNA-seq) of the dissected intestine from the mutant embryos, we demonstrate that the loss-of-function of the zebrafish cdx1b yields hepatocyte-like intestinal cells, a phenotype never observed in the mouse model. Further RNA-seq data analysis, and genetic double mutants and signaling inhibitor studies reveal that Cdx1b functions to guard the intestinal fate by repressing, directly or indirectly, a range of transcriptional factors and signaling pathways for liver specification. Finally, we demonstrate that heat shock-induced overexpression of cdx1b in a transgenic fish abolishes the liver formation. Therefore, we demonstrate that Cdx1b is a key repressor of hepatic fate during the intestine specification in zebrafish.
  • loading
  • Bort, R., Signore, M., Tremblay, K., Martinez, B.J., Zaret, K.S., 2006. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev. Biol. 290, 44-56
    Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., Xi, J.J., 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465-472
    Chawengsaksophak, K., James, R., Hammond, V.E., Kontgen, F., Beck, F., 1997. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386, 84-87
    Chen, Y., Ding, X.N., Wang, S.Y., Ding, P.W., Xu, Z.X., Li, J.K., Wang, M.Y., Xiang, R., Wang, X.L., Wang, H.Y., et al., 2021. A single-cell atlas of mouse olfactory bulb chromatin accessibility. J. Genet Genomics 48, 147-162
    Chen, Y.H., Lu, Y.F., Ko, T.Y., Tsai, M.Y., Lin, C.Y., Lin, C.C., Hwang, S.P., 2009. Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Dev. Dynam. 238, 1021-1032
    Cheng, P.Y., Lin, C.C., Wu, C.S., Lu, Y.F., Lin, C.Y., Chung, C.C., Chu, C.Y., Huang, C.J., Tsai, C.Y., Korzh, S., et al., 2008. Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation. Development 135, 941-952
    Cheng, W., Guo, L., Zhang, Z., Soo, H.M., Wen, C., Wu, W., Peng, J., 2006. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev. Biol. 294, 482-496
    Davidson, A.J., Zon, L.I., 2006. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev. Biol. 292, 506-518
    Delous, M., Yin, C., Shin, D., Ninov, N., Debrito, C.J., Pan, L., Ma, T.P., Farber, S.A., Moens, C.B., Stainier, D.Y., 2012. Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet. 8, e1002754
    Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21
    Dong, P.D., Munson, C.A., Norton, W., Crosnier, C., Pan, X., Gong, Z., Neumann, C.J., Stainier, D.Y., 2007. Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat. Genet. 39, 397-402
    Duprey, P., Chowdhury, K., Dressler, G.R., Balling, R., Simon, D., Guenet, J.L., Gruss, P., 1988. A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine. Genes Dev. 2, 1647-1654
    Field, H.A., Dong, P.D., Beis, D., Stainier, D.Y., 2003. Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev. Biol. 261, 197-208
    Flores, M.V., Hall, C.J., Davidson, A.J., Singh, P.P., Mahagaonkar, A.A., Zon, L.I., Crosier, K.E., Crosier, P.S., 2008. Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of mammalian Cdx2. Gastroenterology 135, 1665-1675
    Gao, C., Huang, W., Gao, Y., Lo, L.J., Luo, L., Huang, H., Chen, J., Peng, J., 2019. Zebrafish hhex-null mutant develops an intrahepatic intestinal tube due to de-repression of cdx1b and pdx1. J. Mol. Cell Biol. 11, 448-462
    Gao, C., Zhu, Z., Gao, Y., Lo, L.J., Chen, J., Luo, L., Peng, J., 2018. Hepatocytes in a normal adult liver are derived solely from the embryonic hepatocytes. J. Genet. Genomics 45, 173-175
    Gao, N., White, P., Kaestner, K.H., 2009. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev. Cell 16, 588-599
    Gao, Y., Jin, Q., Gao, C., Chen, Y., Sun, Z., Guo, G., Peng, J., 2022. Unraveling differential transcriptomes and cell types in zebrafish larvae intestine and liver. Cells 11, 3290
    Guan, Y., Huang, D., Chen, F., Gao, C., Tao, T., Shi, H., Zhao, S., Liao, Z., Lo, L.J., Wang, Y., et al., 2016. Phosphorylation of def regulates nucleolar p53 turnover and cell cycle progression through def recruitment of Calpain3. PLoS Biol. 14, e1002555
    Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou, Z., Chen, H., Ye, F., et al., 2018. Mapping the mouse cell atlas by microwell-seq. Cell 172, 1091-1107
    Hao, J., Ho, J.N., Lewis, J.A., Karim, K.A., Daniels, R.N., Gentry, P.R., Hopkins, C.R., Lindsley, C.W., Hong, C.C., 2010. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS Chem. Biol. 5, 245-253
    Holtzinger, A., Evans, T., 2005. Gata4 regulates the formation of multiple organs. Development 132, 4005-4014
    Hryniuk, A., Grainger, S., Savory, J.G., Lohnes, D., 2012. Cdx function is required for maintenance of intestinal identity in the adult. Dev. Biol. 363, 426-437
    Hryniuk, A., Grainger, S., Savory, J.G., Lohnes, D., 2014. Cdx1 and Cdx2 function as tumor suppressors. J. Biol. Chem. 289, 33343-33354
    Huang, H., Ruan, H., Aw, M.Y., Hussain, A., Guo, L., Gao, C., Qian, F., Leung, T., Song, H., Kimelman, D., et al., 2008. Mypt1-mediated spatial positioning of Bmp2-producing cells is essential for liver organogenesis. Development 135, 3209-3218
    James, R., Kazenwadel, J., 1991. Homeobox gene expression in the intestinal epithelium of adult mice. J. Biol. Chem. 266, 3246-3251
    Kumar, N., Tsai, Y.H., Chen, L., Zhou, A., Banerjee, K.K., Saxena, M., Huang, S., Toke, N.H., Xing, J., Shivdasani, R.A., et al., 2019. The lineage-specific transcription factor CDX2 navigates dynamic chromatin to control distinct stages of intestine development. Development 146, dev172189
    Larsen, S., Davidsen, J., Dahlgaard, K., Pedersen, O.B., Troelsen, J.T., 2019. HNF4alpha and CDX2 regulate intestinal YAP1 promoter activity. Iint. J. Mol. Sci. 20, 2981
    Lo, J., Lee, S., Xu, M., Liu, F., Ruan, H., Eun, A., He, Y., Ma, W., Wang, W., Wen, Z., Peng, J., 2003. 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res. 13, 455-466
    Lorent, K., Yeo, S.Y., Oda, T., Chandrasekharappa, S., Chitnis, A., Matthews, R.P., Pack, M., 2004. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 131, 5753-5766
    Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550
    Lykke-Andersen, S., Jensen, T.H., 2015. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 16, 665-677
    Ma, Z., Zhu, P., Shi, H., Guo, L., Zhang, Q., Chen, Y., Chen, S., Zhang, Z., Peng, J., Chen, J., 2019. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259-263
    Manfroid, I., Ghaye, A., Naye, F., Detry, N., Palm, S., Pan, L., Ma, T.P., Huang, W., Rovira, M., Martial, J.A., et al., 2012. Zebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration. Dev. Biol. 366, 268-278
    Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J., White, S.J., Shin, J., Appel, B., Dong, P.D., Stainier, D.Y., Heath, J.K., 2005. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114-135
    Ober, E.A., Verkade, H., Field, H.A., and Stainier, D.Y., (2006). Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442, 688-691
    Picelli, S., Faridani, O.R., Bjorklund, A.K., Winberg, G., Sagasser, S., Sandberg, R., 2014. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171-181
    Shin, D., Shin, C.H., Tucker, J., Ober, E.A., Rentzsch, F., Poss, K.D., Hammerschmidt, M., Mullins, M.C., Stainier, D.Y., 2007. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 134, 2041-2050
    Shin, D., Lee, Y., Poss, K.D., Stainier, D.Y., 2011. Restriction of hepatic competence by Fgf signaling. Development 138, 1339-1348
    Simmini, S., Bialecka, M., Huch, M., Kester, L., van de Wetering, M., Sato, T., Beck, F., van Oudenaarden, A., Clevers, H., Deschamps, J., 2014. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2. Nat. Commun. 5, 5728
    Sosa-Pineda, B., Wigle, J.T., Oliver, G., 2000. Hepatocyte migration during liver development requires Prox1. Nat. Genet. 25, 254-255
    Stringer, E.J., Duluc, I., Saandi, T., Davidson, I., Bialecka, M., Sato, T., Barker, N., Clevers, H., Pritchard, C.A., Winton, D.J., et al., 2012. Cdx2 determines the fate of postnatal intestinal endoderm. Development 139, 465-474
    Suzuki, K., Masuike, Y., Mizuno, R., Sachdeva, U.M., Chatterji, P., Andres, S.F., Sun, W., Klein-Szanto, A.J., Besharati, S., Remotti, H.E., et al., 2021. LIN28B induces a differentiation program through CDX2 in colon cancer. JCI Insight 6, e140382
    Tang, D., He, Y., Li, W., Li, H., 2019. Wnt/beta-catenin interacts with the FGF pathway to promote proliferation and regenerative cell proliferation in the zebrafish lateral line neuromast. Exp. Mol. Med. 51, 1-16
    Tao, T., Peng, J., 2009. Liver development in zebrafish (Danio rerio). J. Genet. Genomics 36, 325-334
    Thestrup, M.I., Caviglia, S., Cayuso, J., Heyne, R., Ahmad, R., Hofmeister, W., Satriano, L., Wilkinson, D.G., Andersen, J.B., Ober, E.A., 2019. A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation. Nat. Commun. 10, 5220
    Verzi, M.P., Shin, H., San, R.A., Liu, X.S., Shivdasani, R.A., 2013. Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding. Mol. Cell Biol. 33, 281-292
    Wallace, K.N., Akhter, S., Smith, E.M., Lorent, K., Pack, M., 2005. Intestinal growth and differentiation in zebrafish. Mech. Dev. 122, 157-173
    Wu, C.S., Lu, Y.F., Liu, Y.H., Huang, C.J., Hwang, S.L., 2021. Zebrafish Cdx1b modulates epithalamic asymmetry by regulating ndr2 and lft1 expression. Dev. Biol. 470, 21-36
    Yang, S.L., Aw, S.S., Chang, C.Q., Korzh, S., Korzh, V., Peng, J.R., 2011. Depletion of Bhmt elevates sonic hedgehog transcript level and increases β-Cell number in zebrafish. Endocrinology 152, 4706-4717
    Yang, Y., Li, Y.Y., Fu, J.L., Liu, Y.F., Li, S., Ni, R., Yang, Q.F., Luo, L.F., 2022 Intestinal precursors avoid being misinduced to liver cells by activating Cdx-Wnt inhibition cascade. Proc. Natl. Acad. Sci. U.S.A. 119, e2205110119
    Yee, N.S., Yusuff, S., Pack, M., 2001. Zebrafish pdx1 morphant displays defects in pancreas development and digestive organ chirality, and potentially identifies a multipotent pancreas progenitor cell. Genesis 30, 137-140
    Zhang, K.G., Zhang, M.P., Luo, Z.J., Wen, Z.L., Yan, X.H., 2020. The dichotomous role of TGF-β in controlling liver cancer cell survival and proliferation. J. Genet. Genomics 47, 497-512
    Zhao, S.Y., Huang, D.L., Peng, J.R., 2021. Nucleolus-localized Def-CAPN3 protein degradation pathway and its role in cell cycle control and ribosome biogenesis. J. Genet. Genomics 48, 955-960
    Zorn, A.M., Wells, J.M., 2009. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221-251
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (284) PDF downloads (30) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return